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Abstract

Network analysis and graph mining are used in many fields such as chem-
istry, biology, physics, human sciences and (computer) engineering, but also
in everyday life from route planners to recommendation systems and social
networks tools.

In this context, nodes represent concepts of interest and edges represent a
given relation between nodes. In this elegant abstraction, finding the shortest
path is probably the most well-known problem and is common to all graphs
textbooks. This problem consists in the identification of the shortest (in terms
of cost or length), most effective path, between two nodes.

However, the shortest path forgets about the rest of the network and there-
fore fails to report some important information present in this network. For
example, it does not integrate the degree of connectivity between nodes. In
many applications, nodes connected by many indirect paths should be con-
sidered as “closer” than nodes connected by only a few paths. On the other
hand, measures taking connectivity into account (such as the commute-time
distance) have their own drawbacks, especially when networks become large.

The bag-of-paths framework defines a family of distances interpolating
between the shortest path and the commute-time distances. In doing so, the
framework takes into account both proximity between nodes in the network
and amount of connectivity. It is also possible, via a temperature parameter, to
emphasize more on network exploitation or on network exploration.

This thesis is based on the bag-of-paths framework and introduces several
of its applications: a new classifier based on a bag-of-paths group betweenness
for graph-based semi-supervised classification, a new graph criticality measure
and an algorithm to determine an optimal, mixed, policy for Markov decision
processes. Other applications, closely related to the bag-of-paths framework,
are also proposed.
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Chapter 1

Introduction

Except if he lives in a cave, every single person will agree that nowadays In-
formation and Communications Technologies (ICT) take a greater and greater
importance in our lives: Internet, social networks, Internet of Things (IoT), Ar-
tificial Intelligence (AI) are concepts that everybody should at least be aware
of.

Some authors (see [212] as an example) even assimilate ICT to a Fourth
Industrial Revolution (or third, according to other authors, since the border
between the third and the fourth is fuzzy):

I The First Industrial Revolution took place from the 18th to 19th centuries
in Europe and America. It was characterized by a conversion from an
agrarian, rural society to an industrial and urban one. Iron, steam engine,
and textile industries were the big improvements of this period, which
stays associated to the Victorian age in the United Kingdom.

I The Second Industrial Revolution took place in the late 19th, begin 20th
centuries. Steel, mass production, oil (and chemical industry), and elec-
trical power were the major improvements at that time. The society be-
came more specialized and still more urban (as industries are located
near cities).

I The (not universally accepted) Third Industrial Revolution started in mid
20th century and is still going on. Analogical and mechanical electronic
devices let the place to the digital technology available today. For this
reason, it is also called the Digital Revolution. This era advancements
were, among other, computers, personal computers, cellular phones, and
the Internet.

I The Fourth Industrial Revolution builds on the Digital Revolution after
the beginning of the 21th century. The technology becomes connected,
embedded within society and even within human body. This Revolution
keywords are robotics, artificial intelligence, nanotechnology, biotechnol-
ogy, Internet of Things, the Cloud, and autonomous vehicles.
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Chapter 1. Introduction

Like revolutions that preceded it, the Fourth Industrial Revolution has the
potential to increase global income levels and improve the quality of life for
populations around the world [212]. But those rapid changes also left some
people behind.

This thesis is a small contribution to this revolution, developing data min-
ing tools in this context. The volume of data generated by internet and social
networks is increasing every day, and there is a clear need for efficient ways of
extracting useful information from them.

However, this work is not a reflexion on how those tools should be used
(indeed, a few more theses could be written on this subject, especially in our
fast evolving society). The main concern is about designing new computer-
based tools to solve practical problems.

The whole thesis is devoted to networked (or graph-based) data. Such
representation is a natural abstraction for a lot of interesting concepts:

I Social networks are people’s profiles linked by friendship or professional
links.

I Maps are cities linked by roads.

I Internet is composed of files linked by hyperlinks.

I (Bio)-chemical databases consist of molecules linked by chemical interac-
tions.

I Power grid are producers and consumers linked by power lines.

Of course some of those concepts can be studied outside of graph theory, but
in this thesis, this framework was systematically chosen.

In particular, we are interested into automatic graph-based classification
(Chapter 5 and Chapter 6), graph-based criticality (Chapter 7), automatic fraud
detection (Chapter 8) and Markov decision processes (Chapter 9). We worked
on making accurate predictions, and on handling large amounts of data.

The rest of this introduction is composed of a plan of the thesis in Section 1.1
and of a description of the different chapters and associated publications in
Section 1.2.

1.1 Outline

This thesis is organized as follows:

I Chapter 2 reviews the underlying concepts of graph theory.

I Chapter 3 follows the same objective for semi-supervised learning.
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I Chapter 4 introduces the bag-of-paths framework, which is used in Chap-
ter 5, 6, 7 and 9.

I Chapter 5 derives a classifier based on a Bag-of-Path group betweenness
for graph-based semi-supervised classification.

I Chapter 6 investigates different semi-supervised classification methods
to compare feature based approaches, graph structure based approaches,
and dual approaches combining both information sources.

I Chapter 7 derives a graph criticality measure based on the bag-of-paths
framework.

I Chapter 8 tackles fraud detection based on a graph structure and semi-
supervised learning.

I Chapter 9 studies Markov decision processes based on the randomized
shortest path framework (RSP), which is really close to the bag-of-paths
framework.

I Finally, chapter 10 concludes this thesis.

1.2 Associated publications

Here is the list of scientific publications made in the context of this work:

1. The work presented in Chapter 5 has been published in:

Bertrand Lebichot, Kevin Francoisse, Ilkka Kivimaki and Marco Saerens.
Semi-Supervised Classification through the Bag-of-Paths Group Between-
ness. In IEEE Transactions on Neural Networks and Learning Systems 25 (6
2014), pp. 1173–1186.

I Bertrand Lebichot is with LOURIM and ICTEAM from the Univer-
sité catholique de Louvain, Louvain-la-Neuve, Belgium.

I Kevin Francoisse is with ICTEAM from the Université catholique
de Louvain, Louvain-la-Neuve, Belgium.

I Ilkka Kivimaki is with ICTEAM from the Université catholique de
Louvain, Louvain-la-Neuve, Belgium and with the Department of
Computer Science Aalto University, Helsinki, Finland.

I Marco Saerens is with ICTEAM from the Université catholique de
Louvain, Louvain-la-Neuve, Belgium.
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2. The work presented in Chapter 6 has been submitted as:

Bertrand Lebichot and Marco Saerens. An experimental study of graph-
based semi-supervised classification with additional node information.
Currently in reviewing (second round) in Information Fusion.

3. The work presented in Chapter 7 has been published in:

Bertrand Lebichot and Marco Saerens. A Bag-of-Paths Node Criticality
Measure. In Neurocomputing, Volume 275 (January 2018), pp. 224–236.

4. The work presented in Chapter 8 has been published in:

Bertrand Lebichot, Fabian Braun, Olivier Caelens and Marco Saerens. A
graph-based, semi-supervised, credit card fraud detection system. In:
Complex Networks & Their Applications V: Proceedings of the 5th Internation-
alWorkshop on Complex Networks and their Applications (COMPLEX NET-
WORKS 2016). Ed. by H. Cherifi et al. Cham: Springer International
Publishing, 2017, pp. 721–733.

I Fabian Braun is with the R&D department from Worldline GmbH,
Germany.

I Olivier Caelens is with the R&D department from Worldline SA/NV,
Belgium.

5. The work presented in Chapter 9 has to be submitted soon as: Bertrand
Lebichot, Guillaume Guex, Ilkka Kivimaki and Marco Saerens. Con-
strained Randomized Shortest Path Problems. To be submitted soon.

I Guillaume Guex is with ICTEAM from the Université catholique de
Louvain, Louvain-la-Neuve, Belgium.

I We also thank Benjamin Blaise, a former Master student, who
helped us to investigate the randomized Markov decision processes
in his Master thesis.
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Chapter 2

Graphs and networks

This chapter introduces graphs and related concepts that are used throughout
this thesis. The following topics are covered: Section 2.1 is a short introduction.
Section 2.2 presents the different types of graphs. Sections 2.3 and 2.4 intro-
duces respectively basic notations and matrix notations. Section 2.5 focuses
on paths and cycles. Section 2.6 briefly discusses the shortest path problem.
Section 2.7 reviews Markov chains. Finally, Section 2.8 is dedicated to random
graph generators.

2.1 An introduction to graphs

Graph theory is a relatively recent field of mathematics. The first book [150]
about it was published in 1936. However, Euler’s work [84], on the seven
bridges of Königsberg (in Prussia, later renamed Kaliningrad) is often consid-
ered as the first work on graphs, and was published two centuries earlier [110,
204, 4, 90].

Graph theory covers well known problems such as the Traveling Saleman
Problem, Eulerian paths, and Graph Coloring to name a few [110, 204, 252, 42,
4]. More recently, thanks to computer developments and the availability of
large networks, a lot of new work emerged, often linked with other fields such
as chemistry, biology, physics, human sciences, and engineering [90].

This chapter, largely inspired by [90] but also by [204, 110, 42, 183], can be
seen as a reminder about graph theory, although only the concepts used later
in this thesis are covered. For a wider review, a lot of detailed textbooks are
available (see for example [110, 204, 252, 42, 4, 90, 38]).

2.2 Graph types

Graphs are discrete structures composed of nodes and edges connecting those
nodes. A graph or network G (both terms will be used interchangeably) can
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be formally defined by two sets:

I a finite non-empty set V(G) = V whose elements are called nodes (some-
times vertices).

I a set E(G) = E whose elements are links between pairs of nodes of V and
are called edges (sometimes arcs or simply links). An edge somehow is
said to connect its endpoint nodes.

A graph is therefore a collection of nodes linked by edges, (V, E).
Graphs are often used as a convenient way for representing pairwise rela-

tions between objects of interest: nodes represent the objects or entities and
edges represent binary relations between those objects. For instance, in a so-
cial network, nodes can represent people and edges can be a friendship link
between them. The number of nodes will be noted n = |V| and the number of
edges will be noted e = |E|. An edge connecting a certain node i to a certain
node j will be noted i→ j.

In this thesis, different kinds of graphs are used and it is important to keep
in mind the properties of those graphs: Links can be oriented (or not), loops
can be present (or not), and multiple edges can be present between two nodes...
Sadly, there is no unified way to name graphs according to their properties.
This lack of uniformity is somehow due to the relatively modern interest in
graph theory, and because it has applications in a wide variety of disciplines.
Table 2.1 summarized all possible type of graph. Nevertheless, there are three
main properties that are commonly accepted [204]:

I Multiple edges between two nodes can be allowed. For example, three
edges can be present between two nodes, encoding different weights
compared to the case where there would be only one edge. In this case,
the graph is called a multiple graph or multigraph. If edges between
two nodes are restricted to be unique, or absent (kind of boolean) and
that no loops are present, the graph is called a simple graph. If loops are
allowed it is called a simple graph without loops.

I Those edges can be oriented or not. If an edge (or path, see Section 2.5)
is oriented, the relationship is directed. A transition on that edge is only
allowed in one direction and the graph is called a directed graph (or
digraph). Note that a second edge can link the two same nodes in the
opposite direction. A graph with no oriented edges is called undirected.

I The presence of (self-)loops, i.e. edges that start and end on the same
node, can be allowed or forbidden. Graphs that may include loops, and
possibly multiple edges connecting the same pair of vertices or a vertex
to itself, are sometimes called pseudographs. A graph without self-loops
and without multiple edges is called a simple graph.
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TA B L E 2 . 1 : Graph nomenclature used this work. Notice
that the status about the weights on the edges must also be

specified using weighted or unweighted.

Loops forbidden Multiple edges ?
no yes

Directed edges ?
no undirected simple graph undirected multiple graph

undirected multigraph

yes directed simple graph directed multiple graph
simple digraph directed multigraph

Loops allowed Multiple edges ?
no yes

Directed edges ?
no undirected simple graph with loops undirected multiple graph with loops

undirected pseudograph with loops undirected pseudograph with loops

yes directed simple graph with loops directed multiple graph with loops
directed pseudograph with loops directed pseudograph with loops

Furthermore, weights on edges can be defined: as opposed to simple
boolean edges, and the interpretation differs whether or not the graph is di-
rected.

I In the case of a weighted undirected graph, a non-negative symmetric
weight wij (with wij = wji), quantifying the degree of “affinity”, the
degree of “similarity” or the “closeness” between the two nodes i and j, is
associated to each edge. In a co-authorship network, weights could be set,
e.g., to the number of papers co-signed by two authors. An undirected
graph can be considered as a directed graph with each edge having the
same weight and being bi-directional. A graph without weights assigned
to edges is called unweighted.

I If the graph is weighted and directed, the (directed) weight wij can usu-
ally be interpreted as a degree of endorsement, credit, reward, or depen-
dency of object i towards object j. It roughly defines a binary relation
between pairs of nodes in which the starting node delivers some kind
of “credit” to the ending node. This happens, e.g. in a citation network
where papers are citing other papers. On the contrary, for some directed
networks, the weights on the edges could instead reflect a relation of
dominance or influence of i on j.

2.3 Basic graph definitions

Two nodes from V are adjacent if there is an edge in E connecting these two
nodes. Additionally, a node and an edge are incident if the edge is connected
to the node.

A graph H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G). Notice
that V(H) and E(H) must be coherent. Those subgraphs can have other prop-
erties: centered around a particular node, for instance obtained from a cluster
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ofG, or composed of multiple disconnected subgraphs,... Many computational
tasks involve identifying subgraphs of various types.

The concept of degree is essential in graph theory. It depends on the type
of graph but is always related to the number of edges incident to a considered
node:

I For unweighted undirected graph, the degree of a node is the number
of edges incident with it or, equivalently, the number of nodes adjacent
to it. A node with a degree equal to 0 is called an isolated node. Every
finite (i.e. with a finite number of nodes) undirected graph has an even
number of vertices with odd degree (the handshaking lemma [204]).

I For weighted graph, the generalized degree, or simply the degree, of a
node is the sum of the weights (the total weight) of the edges incident
with it.

I For directed graphs, indegrees and outdegrees must be introduced: the
indegree of a node is the number of ingoing edges (or the total weight for
a weighted graph) ending at the considered node while its outdegree is
the number of outgoing edges (or the total weight for a weighted graph)
starting from the considered node.

A bipartite graph (or bigraph) is a graph whose nodes can be divided into
two disjoint subsets X and Y such that each edge links a node in X to a node
in Y , or vice-versa. In other words, for all edges i → j ∈ E , either i ∈ X and
j ∈ Y , or i ∈ Y and j ∈ X , with X ∩ Y = ∅ and X ∪ Y = V . Consequently,
there are no edge connecting two nodes in X or connecting two nodes in Y .

Similarly, a tripartite graph is a graph whose nodes can be divided into
three disjoint subsets X , Y and Z (with X ∩Y = ∅, Y ∩Z = ∅, X ∩Z = ∅, and
X ∪ Y ∪ Z = V) such that there are no edges connecting two nodes belonging
to the same subset X , Y , or Z and the starting and ending nodes of each edge
belong to two different subsets (X , Y , or Z) .

2.4 Matrix representation

Matrices play an important role in graph theory [110, 204, 252, 42, 4]. Adja-
cency matrix A of a n-nodes graph G is a n × n matrix where off-diagonal
elements aij are the (integer) number of edges from node i to node j. The
on-diagonal elements akk are the number of self-loops from and to node k. i,
j, and k are restricted to be ∈ [1, . . . , n]), and elements aij of A are restricted to
be ≥ 0
Certain other restrictions may apply:

8



Chapter 2. Graphs and networks

I If multiple edges (and weights) are forbidden, aij is restricted to be zero
or one, ∀i and ∀j

I If self-loops are forbidden, akk = 0, ∀k.

I If the graph is undirected, A is symmetric.

I If the graph is weighted, then multiple edges are forbidden and aij (and
potentially akk) are allowed to be non-negative real values.

In addition to providing an algebraic representation of graph G, adjacency
matrix A of G can be used to easily extract information about the underlying
graph and its structure. For example, for an unweighted graph, the element
in the ith row and jth column of matrix At (A to the power t) provides the
number of paths of length t between node i and node j in G .

The sum of all the elements of matrix A is called to the volume of the graph,
vol(G) =

∑n
i,j=1 aij = a••.

Note that an adjacency matrix of a graphG is based on the ordering chosen
for the nodes. Hence, there are n! different adjacency matrices for a n-node
graph, representing all possible permutations of the node indices.

Notice that in the case of an undirected bipartite graph, the adjacency
matrix A is of the form

Abi =

[
0X×X AX×Y
AT
X×Y 0Y×Y

]
(2.1)

where OX×X and OY×Y are two matrices full of zeros (indicating that there is
no links between elements of the same set (X or Y)).

In some situations, instead of (or in addition to) affinities, nonnegative costs
are assigned to the edges of G. The cost matrix is defined accordingly

[C]ij =

{
cij if i→ j ∈ E
∞ otherwise (for a weighted graph) (2.2)

This number represents the immediate cost of transition from nodes i to
j. If there is no link between i and j, the cost is assumed to take a large value,
denoted by cij =∞. The cost matrix C is an n× n matrix containing the cij as
elements.

Costs are usually set independently of the adjacency matrix: they are quan-
tifying the cost of a transition according to the problem at hand. Costs can,
e.g., be set in function of some properties, or features, of the nodes or the arcs
in order to bias the probability distribution of choosing a path. In the case
of a social network, we may, for instance, want to bias the paths in function
of the education level of the persons, therefore favoring paths visiting highly
educated persons (see [94] for details). If there is no reason to introduce a cost,
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we simply set cij = 1 (paths are penalized by their length) or cij = 1/aij (in
this case, aij is viewed as a conductance and cij as a resistance). Notice that a
weight matrix wij can be sometimes used instead of aij , if different) – this last
setting is used in the experimental section.

Another useful matrix aiming at representing an undirected (or directed)
graph and capturing its structure is the n× |E| incidence matrix J. Each row
corresponds to a node of G and each column to an edge of G. However, this
representation is not used in this thesis. More information about the incidence
matrix can be found in [221, 204, 23].

We finally introduce the n×n Laplacian matrix L, for an undirected graph
without self-loop, defined as

L , D−A (2.3)

where D = Diag(Ae) is the diagonal degree matrix of the graph G containing
the ai• =

∑n
j=1 aij on its diagonal and e is a column vector full of ones. L

is positive semi-definite [42, 63]. Another of its properties is that its eigenval-
ues provide useful information about the connectivity of the graph [63]. The
smallest eigenvalue of L is always equals to zero, and the second smallest
one is equal to zero only if the graph is composed of at least two connected
components (see Section 2.5). This last value is called the algebraic connectiv-
ity. Actually, the multiplicity of the zero eigenvalue of the Laplacian matrix is
equal to the number of connected components of G [63].

Another important property of the Laplacian matrix is the following: For
any vector of values x = [x1, x2, . . . , xn]T defined on the nodes,

xTLx =
1

2

n∑
i,j=1

aij(xi − xj)2 =
1

2

n∑
i=1

∑
j∈N (i)

aij(xi − xj)2 (2.4)

is a criterion measuring to what extent the value xi on each node is close to the
values of its neighbors. It is equal to zero (its minimum) when the values xi are
constant. Therefore, this criterion is a structural measure of the smoothness
of the distribution of the values over the graph. It therefore measures the
overall assortativity, or structural (auto)correlation in the graph (the fact that
neighboring nodes take similar values).

The properties of L and its pseudoinverse L+, especially the properties of
its eigenvalues and eigenvectors, are of particular importance for analyzing
the structure of the underlying graph G. For instance, we already saw that
the multiplicity of the zero eigenvalue of the Laplacian matrix is equal to the
number of connected components of G [63]. Thus, L has at least one zero
eigenvalue and is therefore rank-deficient.

However, in the Equation (2.4), the sum is run over all the edges which
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implicitly favors high-degree nodes (hubs) since they appear more frequently
in the sum. In order to alleviate this effect, x can be rescaled, leading to the
normalized Laplacian matrix L̃ [63, 161, 243]:

L̃ , D−
1
2 LD−

1
2 = I−D−

1
2 AD−

1
2 (2.5)

Equation (2.5) immediately follows by substituting D−1/2x for x in Equa-
tion (2.4). This shows that the normalized Laplacian matrix is also positive
semi-definite.

2.5 Paths and cycles

A path ℘ [110, 204, 252, 42, 4] (also called a walk) in a graph is a sequence
of edges in which each successive node is adjacent to its predecessor in the
path. A cycle or loop is a path whose starting node is equal to the ending node.
The set of all possible paths of G starting from node i and ending in node j
(including possible loops) is denoted Pij , and the set of all t-steps paths of G,
starting from node i and ending in node j (including loops), is denoted by
Pij(t). A path between i and j will be denoted by i j or ℘ij .

A graph is said to be connected (or strongly connected if the graph is
directed) if there exists at least one path from every node to every other node
in the graph. A graph that is not connected is called disconnected and consists
of a set of connected components, which are connected subgraphs.

2.6 The shortest path distance

Considering a pair of nodes, it is really likely that there are several paths be-
tween them, and that these paths differ in length (number of hops or steps
when following the path). The path with lower length is called the shortest
path between those two nodes. In an unweighted graph, the shortest path dis-
tance between two nodes is defined as the (integer) length of minimum-length
between them. For weighted graphs, the shortest path refers to the path for
which the total cumulated cost (in terms of cij) along the path is minimal. The
shortest path (or lowest cost) distance is then defined as this total. If there is
no possible path between two nodes, then the distance between them is con-
sidered as infinite (or sometimes undefined). This happens when a graph is
not connected, then the distance between at least one pair of nodes is infinite.
In an undirected graph, a shortest path i j length is the same as for j  i.

Computing the shortest path distance in a weighted directed graph is of
fundamental importance [90]. The objective here is either to compute the
shortest path between two particular nodes or to compute its value between all
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pairs of nodes and record these as distances in a matrix D (not to be confused
with the degree matrix, also called D). There are many different techniques
for computing such a distance matrix, depending on the problem (are there
negative weights, compute the k shortest paths, . . . ), the sparsity of the graph,...
and the different constraints that have to be taken into account. Let us just
mention some well-known algorithms such as Dijkstra’s algorithm [204, 252,
4] (one shortest path pair only) and Floyd-Warshall’s algorithm [110, 204] (all-
pairs shortest path pairs).

The diameter of a connected graph is the length of the largest shortest path
between any pair of nodes in graph G. In an unweighted graph, the diameter
can range from a minimum of 0 (a single isolated node) to a maximum of n−1.
If a graph is not connected, its diameter is infinite (or undefined) since the
shortest path distance between one or more pairs of nodes in a disconnected
graph is infinite. The diameter of a graph is important because it quantifies
how far apart the farthest two nodes in the graph are.

2.7 Markov chains

We will now review some basic notions of finite Markov chains. The interested
reader is invited to consult, among others, the following standard textbooks
[53, 111, 141, 185, 205, 231, 235]. This section closely follows the introduction to
Markov chains in [164] and [90], but is also largely inspired by [111, 141, 205].

2.7.1 The transition matrix

Consider a weighted directed graph or networkG (possibly with loops), strongly
connected with a set of n nodes V and a set of edges E . As already mentioned,
the adjacency matrix of the graph (see Section 2.4), containing non-negative
affinities between nodes, is denoted as A, with elements aij ≥ 0. A Markov
chain is a simple discrete mathematical model representing a special class of
dynamic systems (or processes) evolving probabilistically over time (a random
process). Its simple matrix representation is easily interpretable in terms of a
random walker (see Section 2.7.5) jumping around among a finite set of states
(with probabilistic transitions).

Following [164], a n-states finite Markov-chain process s is determined by:

I a set of n states S = {1, 2, . . . , n} (corresponding to the nodes of a graph if
the Markov chain represents a random walk on a graph, see Section 2.7.5).
The system can be in only one state at each time step.

I a set of transition probabilities {pij}ni,j=1. Each pij is the probability
for the system to evolve from state i at time t to state j at time t + 1.

12
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In other words, if s(t) is the random variable defining the state of the
process at time step t, pij = P(s(t + 1) = j|s(t) = i). Let us note by P
the matrix containing all transition probabilities pij , called the transition
probabilities matrix or simply the transition matrix. By construction,
all entries of P are nonnegative and each of its rows sums to one: the
probability that it goes somewhere during the next step must be one and
the transition matrix is therefore stochastic.

I an initial (or starting) state s(0) or an initial probability distribution
on states P(s(0) = i), i = 1, . . . , n.

A Markov chain process therefore assumes that if the process is in state i,
there is a fixed probability pij that it will next be in state j, independently of t,
or

P (s(t+ 1) = j|s(t) = i, s(t− 1) = it−1, ..., s(1) = i1, s(0) = i0) = pij (2.6)

for all states i0, i1, ..., it−1, i, j and all t ≥ 0. Equation (2.6) assumes that
the conditional distribution of any future state s(t + 1) given the past states
s(0), s(1), ..., s(t−1) and the present state s(t), is independent of the past states
and thus depends only on the present state (this is the Markov property).

2.7.2 The multistep transition matrix

In addition to the (one-step) transition probability pij , the τ -step transition
probability p(τ)

ij can also be defined: the probability that a process in state i will
be in state j after τ transitions (see [205, 164] for more details). That is,

p
(τ)
ij = P(s(t+ τ) = j|s(t) = i), with τ ≥ 1 (2.7)

It can be shown [205, 164] that the transition probability of jumping from
state i to state j in exactly τ time steps is equal to [Pτ ]ij . The τ -step transition
matrix is therefore Pτ (i.e. P to the power τ ).

2.7.3 Some properties of states and Markov chains

The first property is closely related to the notion of connected components in
a graph G. A Markov chain is called an irreducible chain if all states can be
reached starting from every state (not necessarily in one move) [90]. A state
j can be reached [164] starting from state i if, when starting in i, it is possible
that the process will ever enter state j; i.e. if p(t)

ij > 0 for some t ≥ 0. This
property is not symmetric because j could be reached starting from i while i
could not be reached starting from j.

13



Chapter 2. Graphs and networks

In the sequel, we will assume that Markov chains are irreducible, unless
clearly stated.

If an irreducible Markov chain is aperiodic [90] then p
(t)
ij > 0, ∀i, j, for

t > T : Every state can be reached from any other state in exactly t steps. In
other words, if an irreducible Markov chain is aperiodic then all the elements
of the t-step transition matrix (for t > T ) are strictly positive. Such a Markov
chain is also called regular.

Bipartite Markov chains and, more generally, periodic chains containing
disjoint sets of states (with no transitions between states belonging to the same
set) do not match this definition [90]. In periodic Markov chains, the process
“oscillates” from one set of states to another and therefore does not converge to
a stationary distribution.

A state α of a Markov chain is absorbing if it is impossible to leave it [111]
(i.e. pαα = 1 an the rest of the row are zeros). If the process has reached
absorbing state α, it will never escape it.

Moreover, a Markov chain is absorbing if it contains at least one absorbing
state and if it is possible to reach at least an absorbing state from every state of
the Markov chain (not necessarily in one step). Since the process cannot escape
from an absorbing state, it will eventually end up in one of the absorbing states.
In an absorbing Markov chain, a state which is not absorbing is called transient.
Absorbing Markov chains are a very useful concept and is investigated in
Chapter 9.

2.7.4 Killed Markov chains.

Here, Contrary to what Section 2.7.1 stated,
∑n
j=1 pij can be< 1 for some states.

The underlying stochastic process is then called killed or evaporating.
In a killed random walk, the process has a non-zero probability of being

killed in some states [220]. In this case, we have
∑n
j=1 pij < 1 for these states,

which will be called killing (sometimes denoted as evaporating), and absorb-
ing if

∑n
j=1 pij = 0 (the process stops when reaching i) [90]. This situation is

similar to a standard finite Markov chain where the chain has a supplementary
absorbing state in which the process can jump, with given probabilities, from
the killing nodes. A killed random walk contains at least a killing Markov
state [90]. The transition matrix of a killed random walk is sub-stochastic
(all row sums are less than or equal to one and at least one is lesser than one).
Thus, when visiting a killing state, the process has a non-zero probability of
jumping to a “cemetery” state, in which case it can be considered as killed, or
dead. A process containing killing states is called a killed random walk: the
probability of finding the process in any state (aside from the fictive “cemetry”
state) is decreasing over time (while for a standard Markov chain, it remains
equal to one).
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Moreover, An absorbing, killing, Markov state α verifies pαj = 0,∀j [90].
In this case, the process stops when α is reached.

2.7.5 Defining a random-walk model on a graph

Following [90], we now associate a state of the Markov chain to each node
of the graph G. Remember that the random variable s(t) is the state of the
Markov model at time t, if the random walker is in node i on G at time t, then
s(t) = i.

Then, the random walker will follow the (single-step) transition probabili-
ties:

pij = P(s(t+ 1) = j|s(t) = i) =
aij
ai•

, where ai• =

n∑
j=1

aij (2.8)

The Markov chain describing the sequence of nodes visited by a random
walker on a graph G is called a random walk on G.

As before, the transition probabilities only depend on the current state and
not on the past ones (memoryless first-order Markov chain). It means that the
random walker chooses to follow the next edge at random, but favors edges
with a high affinity aij . In matrix form, it reads:

P = D−1A (2.9)

where P is the transition matrix and D is the diagonal degree matrix containing
the degrees of the nodes on its diagonal.

Let us now compute the following probability for the random walk to be
in the different states, according to P and a starting distribution. Let xi(t) =
P(s(t) = i) be the probability that the random walker is in state i at time t. The
Markov chain process initial condition is given by:

xi(0) = P(s(0) = i) (2.10)

It becomes, after one iteration:

P(s(1) = i) =

n∑
j=1

pjiP(s(0) = j) (2.11)

And, for the next steps:

P(s(t+ 1) = i) =

n∑
j=1

pjiP(s(t) = j) (2.12)
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Or, in matrix form,
x(t+ 1) = PTx(t) (2.13)

where x(t) is a column vector containing the P(s(t) = i) for all states i =
[1, ..., n].

Recurrence Equation (2.13) can be solved easily. At first time step, we have
x(1) = PTx0, then x(2) = PTx(1) = PTPTx0 = (P2)Tx0 and, more generally,
at time step t,

x(t) = (PT)tx0 = (Pt)Tx0 (2.14)

Therefore, for an initial distribution x0 at t = 0, the probability distribution of
being in each state at time t can be computed for a given random walk on G.

In this thesis, we assume that graphs are strongly connected, and that
Markov chains are irreducible (see Section 2.7.3), unless clearly stated. If this
is not the case, each connected component can be studied one by one, so that
each associated Markov chain is irreducible.

2.7.6 The stationary distribution of a regular Markov chain

For a regular (both irreducible and aperiodic) Markov chain, it is well-
known [164, 185] that the limit

πj = lim
t→∞

p
(t)
ij = lim

t→∞
[Pt]ij (2.15)

exists and is independent of the initial state i. Thus, there is a limiting proba-
bility distribution that the process will be in a certain state after a large number
of transitions, and this value is independent of the initial state. This limiting
probability distribution πj is also called stationary distribution or equilib-
rium distribution and is the probability of finding the process in each state j
as time t→∞.

It can further be shown that πj [164] is equal to the long-run proportion of
visits to state j. The stationary distribution can therefore be interpreted as the
probability of finding the process in state s = j in the long-run behavior.

Moreover, Equation (2.13) can be rewritten assuming that the probability
distribution converged to a stationary value (i.e. if the Markov chain is regular):
limt→∞ x(t) = π. Then,

π = PTπ (2.16)

The stationary distribution can therefore be obtained by computing the
normalized eigenvector of the transition matrix PT associated to eigenvalue 1.
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2.7.7 The fundamental matrix of a killed random walk

As introduced in Section 2.7.4, the transition matrix of a killed random walk is
sub-stochastic. This defines a killed Markov chain.

An interesting related measure is the expected number of visits to each
state before being killed when starting from a state i. This quantity leads to
the fundamental matrix of the killed (or absorbing) Markov chain, and plays
a fundamental role in finite Markov chain theory [53, 111, 141, 185, 205, 231,
235].

Assuming the initial state of the Markov process is node i: In this case,
x0 = ei. Here, ei is a column vector full of 0’s except at position i where it
is equal to 1. From Equation (2.14), the probability distribution after t step is
x(t) = (Pt)Tei. Then, for computing the expected number of visits (starting
from node i), ni, of each state before being killed, we sum the probability
distribution (2.14) over all time step:

ni =

∞∑
t=0

x(t) =

∞∑
t=0

(Pt)Tei

=
( ∞∑
t=0

Pt
)T

ei =
(
(I−P)−1

)T
ei

=
(
eT
i (I−P)−1

)T
(2.17)

If P is stochastic and that the associated Markov process is irreducible and
aperiodic, this series does not converge as the spectral radius of P is 1. Now
that the transition matrix is sub-stochastic (and non-negative), the spectral
radius is less than 1 and the series converges [174]. Notice that when the
matrix P is stochastic (as for standard Markov chain), (I−P) is not of full rank
and the inverse of (I−P) is therefore not defined.

The full fundamental matrix of the killed random walk on G is defined as:

N =


nT

1

nT
2
...

nT
n

 = (I−P)−1 (2.18)

In this matrix, the expected number of visits to state j before being killed or
absorbed, starting from state i can be found on entry i, j.
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2.7.8 The commute-time and commute-cost distance

We now assume a random walk on a directed weighted graph, and that each
node i is reachable starting from each node j. The average commute-time
n(i, j) between node i and node j is the number of steps needed to reach node
j from i for the first time and then go back to starting node i [90]:

n(i, j) , m(i, j) +m(j, i) (2.19)

where m(i, j) is the expected number of step needed for visiting node j for the
first time starting from a transient (non-absorbing) node i. Notice that, while
n(i, j) is symmetric by definition, m(i, j) is not.

The average commute-time is a legit distance measure on graph G [108]
and will therefore be referred to as the commute-time distance. Moreover, it
has been shown that the average commute-time is proportional to the effective
resistance between the two nodes [57, 90].

An interesting property is that the commute-time distance between two
points is decreasing when the number of paths connecting the two points
increases and when the length of one of these paths decreases [78, 90]. See
Chapter 4 for a deeper discussion about this fact.

If costs are associated to edges, the average commute-cost can also be com-
puted, considering the total cost of the paths instead of their lengths. How-
ever [144] showed that this quantity is proportional to the average commute-
time for a given graph. It is therefore redundant with the average commute-
time [90].

2.8 Graph generators

As the name states, graph generators are procedures used to generate (artificial)
graphs. They can be used to study properties of typical graphs, or reproduce
diverse types of complex networks behavior.

Two common graph generators are now introduced [24, 43], and will be
used in Chapter 7.

2.8.1 Erdős-Rényi (ER) Graph Generator.

This model is also called the Poisson random graph generator because it gen-
erates a random graph with a Poisson node degree distribution [43]. This
type of graph is often used to study theoretical properties and behavior of net-
works [183]. The model generates a random adjacency matrix A for the graph
and only requires a probability parameter p ∈ ]0, 1]. The implementation [106]
first generates an upper triangular random matrix (zeros on diagonal, entries
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being ∈ ]0, 1]), then each entry of the matrix is replaced by a 0 if the entry is
smaller than p, and 1 otherwise. This matrix R is then symmetrized using
A = R + RT. Of course, various variants of this procedure exist. For our
experiments in this thesis, p was set to a random value for each graph, with
p ∈ ]0, 1/2].

2.8.2 Albert-Barabási (AB) Graph Generator.

The model generates a random graph with a power law degree distribu-
tion [24, 25]. This kind of network is often observed in natural and human-
generated systems, including the world wide web, citation networks, and
social networks [183] (often called scale-free networks).

An integer parameter m is required for generating such a graph. The im-
plementation [128] begins with an initial connected network of m + 1 nodes.
Then, new nodes are added to the network, one at a time. Each new node is
connected to m existing nodes with a probability that is proportional to the
current degree of each node. The procedure stops when the desired number of
nodes is reached.

Here again, various variants of this procedure exist. With this model, heav-
ily linked nodes (named hubs) tend to quickly accumulate even more edges:
the new nodes have a preference to attach themselves to these already heavily
linked nodes (this is called a preferential attachment). For our experiments,
p was set to a random value for each graph with m ∈ {1, 2, 3, 4, 5, 6}. Many
natural networks in real life often behave like AB graphs (see for example [9]
and citations inside).
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Chapter 3

Semi-supervised Learning

This chapter briefly introduces semi-supervised learning and in particular
graph-based semi-supervised learning. As the name suggests, the semi-
supervised learning paradigm tries to combine the best of the supervised and
the unsupervised learning worlds, those two fundamental tasks being very
common in machine learning. This chapter is inspired by the first chapter
of [268], which is a nice introductory reference, by [58] and by [90].

Historically, the oldest semi-supervised research work was related to the
heuristics known as self-learning (or self-training, or self-labeling) [58] with
for instance [213, 93, 5] in the mid-1960s. Self-learning repeatedly uses a su-
pervised learning method: In each step a part of unlabeled data is labeled
according to the current decision function, then the supervised method is re-
trained using its own prediction as additional labeled points [58].

Semi-supervised learning has become really popular in the early 2000s
and its applications cover a large range of application such as social networks
analysis, categorization of linked documents (e.g. patents or scientific papers),
or protein function prediction, to name a few. For a review of recent work, see
the survey article [266].

This chapter contains a reminder about supervised and unsupervised learn-
ing in Section 3.1, then we focus on semi-supervised learning in Section 3.2.
The difference between transductive and inductive learning is also discussed,
in Chapter 3.3. Finally, this learning scheme is extended to the case of graph-
based classification in Section 3.4.

3.1 Supervised and Unsupervised Learning

Let X be the ns × nf training set data matrix containing ns samples on its
rows and nf features on its columns. Typically it is assumed that samples are
drawn independently and identically distributed (also known as i.i.d.) from
a common distribution X . The set of features is also called features (or input)
space. Entries of X will be referenced by xij , the value of the jth feature for the
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ith sample. Furthermore, y will be the observed column vector containing the
target values, with its entries being noted yi. For classification, those values
are also called labels, are ,e.g., coded as integers between 1 and m (the number
of classes), and represent the class membership of each observation. In this
section, the entries of y can also be continuous in the case of regression. Notice
that the ith row of X is associated to the ith sample and to the target value yi.

3.1.1 Unsupervised Learning

In unsupervised learning, only X is used to fit the model. There is no super-
vision coming from y, no indications about how samples should be grouped.
Samples are said to be unlabeled. The goal of unsupervised learning is to find
interesting structures in data X [58]. Clustering and outlier/anomaly detection
are typical unsupervised learning tasks.

The goal of clustering [2, 58, 268] is to regroup a set of samples in a certain
number of mutually exclusive subsets (or groups, clusters) such that samples
in the same group are more similar to each other than to those in other groups,
according to a given criterion.

Anomaly detection is the identification of samples which do not fit the ex-
pected pattern from a dataset. In other words, this task is about identifying the
“normal” behavior of a dataset, and samples that do not exhibit this behavior.

3.1.2 Supervised Learning

Here, both X and y are used to train the model and are therefore called training
data. The goal is to learn a mapping from X to y [58]. Training data are said
to be labeled since all entries of y are (and must be) known for the training set.
The model learns from those data and produces an inference function, which
is then used to predict information (basically the class for classification) about
new samples, also called test data. If the yi’s are discrete, those values are
called classes and the supervised learning task is called classification [2, 58,
268]. If, on the contrary, continuous number of values is possible for the yi’s,
the supervised learning task is called a regression [2, 58, 268]. In both cases, an
error function can be defined to quantify the difference between the ground-
thrust target values and the predicted outputs of the supervised model.

In the case of classification, the model is often called a classifier. The goal
of a classification task is to automatically assign data to predefined discrete
classes (or categories). The most used performance metric for classification is
the miss-classification rate. It is simply equal to the number of incorrectly clas-
sified samples in the test set divided by the number of samples in this set. This
error rate should be minimum. For particular tasks, miss-classification rate
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must be put aside and more complex metrics should be used (as an illustrative
example, see Chapter 8). As an example, consider two classifiers:

I Classifier 1 correctly predicts 5 samples of class 1 (out of 10) and 95 sam-
ples of class 2 (out of 990). The classification rate is therefore 10%.

I Classifier 2 correctly predicts 0 samples of class 1 (out of 10) and 990
samples of class 2 (out of 990). The classification rate is therefore 99%.

Classifier 2 actually always predicts class 2 and is useless to predict class 1,
contrary to classifier 1, despite its higher classification rate.

3.2 Semi-supervised Learning

Now imagine that some of the yi’s are not known for all i but that we still want
to use all data at our disposal. Reasons can be multiple, but intuitively, labeled
samples are often more costly (in terms of cost, effort, or time) to gather than
unlabeled samples:

I Protein labels can take months of laboratory work to be obtained.

I In spam filtering, only a few spams are reported by users.

I In image classification, millions of unlabeled pictures are available on
internet, but a human annotator is required to label those pictures. There-
fore, this task is time-consuming and can be highly subjective.

Semi-supervised learning therefore aims to understand how labeled and
unlabeled data may change the learning behavior and to design algorithms that
take advantage of such combination [218]. The goal is to provide a prediction
based on both labeled and unlabeled samples.

In practice, nothing ensures that semi-supervised learning will always be
superior to supervised or unsupervised learning. On the other hand, exploit-
ing more information intuitively produces a better model (i.e. show better
performance according to a given metric). By the way, this is not always the
case, see as an example Chapter 6.

Semi-supervised learning tends to be most useful whenever there are more
unlabeled data than labeled ones [2, 58, 268]: since unlabeled data carry less
information than labeled ones, they are required in large number to increase
prediction accuracy significantly [58]. It is also required that unlabeled samples
bring useful information to the learning process. Actually, semi-supervised
learning usually makes some assumptions about the learning process and
works better when those assumptions are met. The most common assumptions
are presented in Section 3.2.1.
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We won’t make a comprehensive description of semi-supervised learning
algorithms in this chapter: many are presented in the Chapters 5 and 6. But the
main trend is that most of semi-supervised learning models are either based on
an extension of (fully) unsupervised learning (such as constrained clustering,
described in Section 3.2.2) or supervised learning (such as semi-supervised
classification and regression, described in Section 3.2.3).

3.2.1 Some common assumptions

This section presents three common assumptions often made in semi-
supervised learning.

The smoothness/continuity/consistency assumption. This central hypothe-
sis can be stated as “Samples which are close to each other are more likely to
share the same value” (but then “close” still has to be defined...) [2, 58]. By
using value, it means that it holds both for classification and regression. For
classification, it means that close samples tend to belong to the same class (see
for instance the case of nearest neighbors). This is also generally assumed in su-
pervised learning to ensure geometrically simple decision boundaries but for
semi-supervised learning, decision boundaries are favored to lie in low-density
regions [58].

Figure 3.1 illustrates this assumption, showing how the consistency as-
sumption can be used to tackle the lack of labels. This figure is called two
moons [117, 107] and is a well known toy dataset generated according to a
pattern of two intertwining moons. Every point should be similar to points in
its local neighborhood, and furthermore, points in one moon should be more
similar to each other than to points in the other moon [265]. Let us now imag-
ine that we only know two labels, represented by the blue circle and the red
circle. The classification result given by a fully supervised Support Vector Ma-
chine (SVM) is given in the central sub-figure. According to semi-supervised
learning and the consistency assumption, however, the two moons should be
classified as shown on the right.

The cluster assumption. This hypothesis states that samples sit in clusters
(see clustering in Section 3.1.1) and that those clusters give information about
the labels [2, 58]. In other words, samples from the same cluster are more likely
to share the same label (or value for regression). The smoothness/continuity
assumption and the cluster assumption are related but not interchangeable:
actually, the cluster assumption can be seen as a special case of the smoothness
assumption. Note that the cluster assumption does not imply that each class
forms a single, compact cluster: it only means that, usually, we do not observe
samples of two different classes in the same cluster [58].
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F I G U R E 3 . 1 : On the left sub-figure, we only know two la-
bels, represented by the blue circle and the red circle. The
center part is the classification resulting from a fully super-
vised SVM. Semi-supervised learning and the consistency
assumption, however, classified the two moons as shown on

the right part.

The manifold assumption. Another well known hypothesis is that the sam-
ples lie approximately on a manifold of (much) lower dimension than the input
space. Then the learning process is about “learning this manifold”, or distances
and densities defined on this manifold [2, 58].

In a non-semi-supervised scheme, this is often used to avoid the well-
known phenomenon called curse of dimensionality [39]. It is related to the
fact that, in the input space, the volume grows exponentially with the number
of dimensions and an exponential growing number of samples are required
for statistical models such as reliable density estimation [58]. Another con-
sequence is that pairwise distances between samples tend to become more
similar (thus less meaningful) when the number of dimensions rises.

Computing a distance between nodes on a graph is closely related to the
computation of a geodesic distance on a (low dimension) manifold [58]. There-
fore, some methods consider the transformation of raw data X into a graph
as a dimensionality reduction technique [76, 90]. If data lie on multiple mani-
folds however, this assumption is not met and disconnected graphs can help
to correctly model the process [218]. This transformation, although interesting,
is not discussed in this thesis.
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3.2.2 Constrained clustering

Constrained clustering can be considered as an extension of unsupervised
clustering. Constrained clustering [245, 268] learns from X (as regular, fully
unsupervised clustering) and from some scarce supervised information about
the clusters: usually it takes the form of a must-link and/or a cannot-link
ns × ns matrix indicating on entry (i, j) if samples i and j must (or cannot,
respectively) be present in the same cluster [268]. The goal of constrained
clustering is to improve the quality of the partition compared to unsupervised
clustering, which uses unlabeled data only.

3.2.3 Semi-supervised classification and regression

Here, the extension comes from the fact that the classifier uses both labeled
and unlabeled data [2, 58, 268, 90]. There are often more unlabeled data than
labeled one (since they are less costly). The goal is to improve (according
to some metric) the classification performance in the semi-supervised case
compared to the supervised one [268]. The same is valid for regression except
that the target variable is continuous.

To be able to use unlabeled data in the learning of a model where all is about
target y, some hypothesis about the underlying distribution of data are often
required [2, 58]. The most frequent were presented in Section 3.2.1. Notice that
those hypotheses are not exclusive to semi-supervised learning, but at least
one of them must be present to bridge the gap between unlabeled and labeled
data. Once this gap is filled, another distinction can be made: will the model
give a prediction for the unlabeled samples only ? Or will it be generalizable
to new (unseen) samples ? This distinction is depicted in Section 3.3.

3.3 Transductive/Inductive Learning

Given data matrix X (and corresponding y), let us now define Xl and Xu (and
corresponding respectively to yl and yu) the sets of labeled and unlabeled
samples, respectively. A third set is also introduced: Xn and corresponding
yn, another set of unlabeled samples we want to predict, but which are not
involved in the model creation. This last set can be used to estimate the gener-
alization power of the model, if yn is known. Notice that Xl, Xu and Xn are
all generated by the same distribution X . Using those notations, two learning
schemes can be characterized:

I Transductive scheme: The model aims to predict only the target variable
for the unlabeled samples Xu (which can be all or part of the test samples
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in this framework) i.e. the column vector yu [268, 222]. This learning
framework was formally introduced by Vapnik in the 1970s [242].

I Inductive scheme: The model aims to predict the target variable for fu-
ture samples Xn (the test samples) which were not already present in the
training data (neither from Xl nor from Xu), or for any new samples fur-
ther generated from X . The inductive scheme is therefore a kind of gen-
eralization based on samples Xl (and Xu in the case of semi-supervised
learning) [268, 222].

Notice that induction is somehow a more difficult problem than transduc-
tion. For a given test set, transduction is more direct as Xu is simply labeled
by the model. On the other hand, induction requires to first build a general
model for all the feature space, and then return the particular value for the
Xu. This discussion is a keystone of Vapnik’s work on transductive learn-
ing [242]. In contrast to inductive learning, in transductive learning, no general
decision rules are inferred, but only the labels of the unlabeled samples are
predicted [58].

In practice, this does not ensure that one of the schemes will always be
superior to the other for a particular dataset or application and both approaches
must be considered case-by-case (see Chapter 6 as an example).

3.4 Graph-based semi-supervised classification

We will now discuss the case where data take the form of a graph (see Chapter 2
for a reminder about graphs). This section is inspired by the discussion of semi-
supervised learning on graphs appearing in Amin Mantrach’s PhD thesis [166].

Here, the feature space is replaced by an adjacency matrix A (see Chapters 5
for an application), or added to an adjacency matrix (see Chapter 6). Samples
Xl and Xu will be replaced by (or correspond to) the sets of nodes Vl and Vu,
respectively the subset of labeled and unlabeled nodes. Then, the graph G (de-
scribed by its adjacency matrix A) is considered as the natural structure of the
data (for example, facebook account linked by friendship links), or constructed
from plain, raw, vector-based data using network formation strategies (see for
example Chapter 4 of [218]).

Then the learning process consists in assigning a label for every unlabeled
node forming a test set: Graph-based semi-supervised classification is some-
times called within-network classification and falls into the semi-supervised
classification paradigm [2, 58, 266, 268] (see Section 3.2.3). The state of the art
of this field can be found in Section 5.1. For a comprehensive survey of the
topic see, e.g., [266, 268].
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Graph-based semi-supervised algorithms often make the same assumption
as regular, usually transductive, semi-supervised learning (see Section 3.2.1).
The game is then to translate the different concepts from the vector-based
world to the graph world. For example the Euclidean distance can become
the shortest path distance for graphs. The most common assumption is that
neighboring nodes are likely to belong to the same class and thus to share
the same class label. In other words, we assume that the dependent variable
(class label) is structurally correlated (autocorrelation, see Section 3.2.1). In
particular, as in spatial statistics [40, 68, 113, 192], it is commonly assumed that
the correlation between the values of the dependent variable on two nodes
of the network depends on the distance between these two nodes (spatial
correlation). The shortest path distance, or the minimal number of transitions
between the two nodes, is often used as a substitute for the Euclidean distance.

This local consistency hypothesis (also called homophily, or structural au-
tocorrelation [265]) can be tested by some standard spatial statistics tests [40,
68, 113, 192]. Two of these tests (Moran’s I and Geary’s c) are described in
Section 6.3.1. This analysis is also used in Section 6.4.4.

Graph-based semi-supervised classification has received a growing focus
in recent years [2, 58, 266, 268], see also Sections 5.1 and 6.2. This problem has
numerous applications such as classification of individuals in social networks,
categorization of linked documents (e.g. patents or scientific papers), or pro-
tein function prediction, to name a few. In this kind of application (as in many
others), unlabeled data are usually available in large quantities and are easy to
collect: friendship links can be recorded on Facebook, text documents can be
crawled from the internet and DNA sequences of proteins are readily available
from gene databases.

This chapter will now be concluded by some specific notation used when
dealing with graph-based semi-supervised classification.

3.4.1 Class membership notations

When tackling the graph-based semi-supervised classification problem, a set
of mutually exclusive classes is considered, {Ck}mk=1, with the number of classes
equal to m. Each node is assumed to belong to at most one class since the class
label can also be unknown. To represent the class memberships, a n × m-
dimensional indicator matrix Y, computed from y, is used. On each of its
rows, it contains, as entries, a 1 in column c when the corresponding node
belongs to class c, and 0 otherwise (m zeros on line i if the node i is unlabeled).
The cth column of Y will be denoted yc and contains the binary memberships
of the nodes to class c, and 0 if unlabeled.
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The bag-of-paths Framework

This section introduces the bag-of-paths (BoP) theoretical background and
notations. The bag-of-paths model was recently introduced in [94] and three
of its applications are discussed in this thesis: the semi-supervised classifica-
tion through the bag-of-paths group betweenness (see Chapter 5), the bag-of-
paths node criticality measure (see Chapter 7) and the constrained randomized
shortest path problem (the RSP framework is really close to the bag-of-paths
framework, see Chapter 9).

The motivation to develop this framework is the following: While rele-
vant in many applications, simple distances as the shortest path distance (see
Section 2.6) and the commute-time distance (see Section 2.7.8) cannot always
be considered as a good candidate in network data analysis for multiple rea-
sons [94]:

I The shortest path distance only depends on the shortest paths between
those nodes and does not integrate the degree of connectivity between
them. In many applications however, nodes connected by many indirect
paths should be considered as “closer” than nodes connected by only a
few paths.

I When computing the distance from or to a given node, the shortest path
distance usually provides many ties, especially in unweighted, undi-
rected, graphs. Considering the amount of connectivity (or other proper-
ties) can help breaking these ties.

I When the size of the graph increases, the resistance and the commute-
time distances (both based on a random walker) converge to a useless
value, only depending on the degrees of the two nodes. [244] depicts this
phenomenon as the random walker getting “lost in space”.

I Those two distances assume completely random movements or commu-
nication in the network, which is also unrealistic.
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node 1
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node 3

node 4

node 5

node 6

F I G U R E 4 . 1 : A small toy graph. According to the bag-of-
path model, the probability to pick a path from node i to j
is given by the entries of matrix Z. Here, The most probable
pair is node 2 to 2 (with probability 11.52%) and the lowest
probable pair is node 6 to 3 (with probability 6.87%). For this

example θ was set to 1.

To summarize, the shortest path distance fails to take the whole structure
of the graph into account [94], whereas random walks quickly loose the notion
of proximity to the initial node when the graph becomes larger [244].

The proposed bag-of-paths framework generalizes the shortest path and
the commute-time distances by computing an intermediate distance, depend-
ing on a temperature parameter T . When T is close to zero, the distance re-
duces to the standard shortest path distance (emphasizing exploitation) while
for T → ∞, it reduces to the commute-cost distance (focusing on explo-
ration) [94]. The resulting framework therefore defines a family of distances
interpolating between the shortest path and the commute-time distance. Do-
ing so, the framework take into account the advantages of both accessibility
between nodes (or proximity) in the network and amount of connectivity.

As a consequence and in practice, the bag-of-paths framework is espe-
cially relevant when considering relatedness of nodes based on communica-
tion, movement, . . . , in a network which does not always happen optimally,
nor completely randomly [94]. Similar ideas appeared at the same time in [60],
based on considering the co-occurrences of nodes in forests of a graph or walks
on the graph, and in [8] and [119], based on a generalization of the effective
resistance in electric circuits [94].

The main point of the bag-of-path framework is to compute the probability
of picking a path starting in node i and ending in node j, taking into account
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the infinite set of path. These probabilities corresponds to the zij of the fun-
damental matrix Z (see Equation 4.9, appearing later). A toy example can be
found on Figure 4.1.

The rest of this chapter is divided as follows: Section 4.1 summarizes bag-
of-paths model. In addition, the bag-of-hitting-paths model is described in
Section 4.2. Notice that those models are used in Chapter 5, Chapter 7, and
Chapter 9.

4.1 The bag-of-paths framework

This framework was originally introduced in the context of distance compu-
tation on graphs [94], capturing its global structure with, as building block,
network paths. This same idea was previously used in [167] for defining a
covariance kernel on a graph. We will briefly review the whole framework in
this section (see [94] for details). The bag-of-paths model can be considered as
a motif-based model [175, 11] using, as building block, paths of the network.
In the next section, hitting paths will be used instead, as motifs.

As you may remember from Section 2.5, a path ℘ (sometimes called a walk)
is a sequence of transitions to adjacent nodes onG (loops are allowed), initiated
from a starting node s, and stopping in an ending node e. If we want to
emphasize on those starting and ending nodes, we will use ℘se instead of ℘.

The BoP framework is based on the probability of picking a path i  j
starting at a node i and ending in a node j from a virtual bag containing all
possible paths in the network [94]. Let us define Pij as the set of all possible
paths connecting node i to node j, including loops. We further define the set
of all paths through the graph as P =

⋃n
i,j=1 Pij . The total cost of a path ℘,

c̃(℘), is defined as the sum of the individual transition costs cij along ℘.
The potentially infinite set of paths in the graph is enumerated and a proba-

bility distribution is assigned to the set of individual paths P . This probability
distribution P represents the probability of picking a path ℘ ∈ P in the bag,
and is defined as minimizing the total expected cost, E [c̃(℘)], among all dis-
tributions with a fixed relative entropy J0. The relative entropy is computed
with respect to a reference distribution: we chose the natural random walk on
the graph (see Equation (2.8)), as in [94].

This choice naturally defines a probability distribution on the set of paths
such that long (high cost) paths occur with a low probability while short (low
cost) paths occur with a high probability (see [94]).
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In other words, we are seeking path probabilities, P(℘), ℘ ∈ P , minimizing
the total expected cost subject to a constant relative entropy constraint:

{P(℘)}
minimize

∑
℘∈P

P(℘) c̃(℘)

subject to
∑
℘∈P P(℘) ln(P(℘)/P̃ref(℘)) = J0∑
℘∈P P(℘) = 1

(4.1)

where P̃ref(℘) represents the probability of following the path ℘ and π̃ref(℘)
is the likelihood of this path when walking according to the natural ran-
dom walk reference distribution (the product of the transition probabili-
ties defined by Equation (2.8) along the path). More precisely, P̃ref(℘) =
π̃ref(℘)/

∑
℘′∈P π̃

ref(℘′) which ensures that the reference probability is prop-
erly normalized. The path likelihoods π̃ref(℘) are already properly normalized
in the case of hitting paths (see Section 4.2):

∑
℘∈P π̃

ref(℘) = 1. On the con-
trary, for regular paths as considered in this section, π̃ref(℘) is not properly
normalized and it can be shown that

∑
℘∈P π̃

ref(℘) = (t+ 1)n , where t is the
maximum length of considered paths in P [94]. Interested readers are advised
to read [94] for more details.

Here, J0 > 0 (the relative entropy) is provided a priori by the user, ac-
cording to the desired degree of randomness, or exploration, he is willing to
concede. Note also that, normally, a non-negativity constraint on the paths
probability should be added, but this is not necessary since the resulting prob-
abilities are automatically non-negative.

As well-known (see [130, 139] and [94, 167, 208] for maximum entropy
distributions over paths), this problem is similar to the standard maximum
entropy problem and can be solved by introducing the following Lagrange
function integrating equality constraints

L =
∑
℘∈P

P(℘)c̃(℘) + λ

∑
℘∈P

P(℘) ln

(
P(℘)

P̃ref(℘)

)
− J0

+ µ

∑
℘∈P

P(℘)− 1


and optimizing over the set of path probabilities {P(℘)}℘∈P (the partial deriva-
tives are set to zero). The Lagrange parameters are then deduced after impos-
ing the constraints.

The result of this minimization (see [94] for details) is a Boltzmann proba-
bility distribution:

P(℘) =
π̃ref(℘) exp [−θc̃(℘)]∑

℘′∈P
π̃ref(℘′) exp[−θc̃(℘′)]

(4.2)
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where θ = 1/T plays the role of an inverse temperature and replaces J0 as the
desired degree of randomness/exploration parameter. exp is the elementwise
exponential and π̃(℘) is the likelihood of the path ℘, according to the natural
random walk on G (the reference random walk) defined earlier in this section.

As expected, short paths ℘ (having a low c̃(℘)) are favored in that they have
a larger probability of being chosen. Moreover, from Equation (4.2), we clearly
observe that when θ → 0+, the paths probabilities reduce to the probabilities
generated by the natural random walk on the graph. In this case, paths are
chosen according to their likelihood in a natural random walk. On the other
hand, when θ is large, the probability distribution defined by Equation (4.2) is
biased towards short paths (shortest ones are more likely to be chosen). Notice
that, in the sequel, it will be assumed that the user provides the value of the
parameter θ instead of J0, with θ > 0.

The bag-of-paths probability [94] is now defined as the quantity P(s =
i, e = j) on the set of (starting, ending) nodes of the paths. It corresponds to
the probability of drawing a path starting in node i and ending in node j from
the virtual bag-of-paths:

P(s = i, e = j) =

∑
℘∈Pij

π̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈P

π̃ref(℘′) exp[−θc̃(℘′)]
(4.3)

where Pij is the set of paths connecting the starting node i to the ending node
j.

Let us derive the analytical closed form of this expression. To this end, we
start from the cost matrix, C (see Section 2.4), from which we build a new
matrix, W, as

W = Pref ◦ exp[−θC] (4.4)

where Pref is the reference transition matrix containing the pref
ij (provided by

Equation (2.8)), the exponential function is taken elementwise and ◦ is the ele-
mentwise multiplication (Hadamard product). The entries of W are therefore
wij = pref

ij exp[−θcij ].
It is shown in [94] that the numerator of Equation (4.3) is

∑
℘∈Pij

π̃ref(℘) exp [−θc̃(℘)] =

∞∑
t=0

[
Wt
]
ij

=

[ ∞∑
t=0

Wt

]
ij

(4.5)
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where, by convention, zero-length paths are taken into account and are associ-
ated to a zero cost. Computing the series of powers of W provides

∞∑
t=0

Wt = (I−W)
−1

= Z (4.6)

which converges if the spectral radius of W is less than 1, ρ(W) < 1. Since
the matrix W only contains non-negative elements, a sufficient condition for
ρ(W) < 1 is that the matrix is sub-stochastic and G is strongly connected,
which is always achieved for θ > 0 and at least one cij > 0 when aij > 0
(see Equation (4.4)), which is assumed for now. The matrix Z is called the
fundamental matrix and zij is the element i, j of Z.

Hence, following Equations (4.5-4.6), we finally obtain, for the numerator
of Equation (4.3), ∑

℘∈Pij

π̃ref(℘) exp [−θc̃(℘)] = zij (4.7)

On the other hand, for the denominator of Equation (4.3), we have

n∑
i,j=1

∑
℘∈Pij

π̃ref(℘) exp [−θc̃(℘)] =

n∑
i,j=1

zij , Z, (4.8)

where Z is called the partition function.
Therefore, from Equation (4.3), the probability of picking a path starting in

i and ending in j in our bag-of-paths model is simply

P(s = i, e = j) =
zij
Z , with Z = (I−W)

−1 (4.9)

Notice that P(s = i, e = j) is not symmetric1. These probabilities quantify the
relative accessibility between the nodes and it was shown that minus their
logarithm, − log P(s = i, e = j), defines a useful distance measure between
nodes [94]. By construction, this probability is high when the two nodes i and j
are highly connected (there are many terms in the numerator of Equation (4.7))
by low-cost paths (each term of the numerator is large). In other words, it
accurately captures the intuitive notion of relative accessibility. These BoP
probabilities are used to define the BoP criticality in Chapter 7.

Note that the BoP probabilities can also be used to define some between-
ness measures [145] which are related to well-known centrality/betweenness
measures in some sense: if θ → ∞ the betweenness tends to be highly corre-
lated with Freeman’s betweenness [96] (only shortest paths are considered),

1For a symmetric variant in the case of undirected graphs [94], we can consider the probability
of picking either i j or j  i, which is P(s = i, e = j) + P(s = j, e = i).
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while if θ → 0+, the betweenness tends to be highly correlated with Newman’s
random walk betweenness [181]. More details can be found in Chapter 5.

We now turn to a variant of the bag-of-paths, the bag-of-hitting-paths.

4.2 The bag-of-hitting-paths framework

The idea behind the bag-of-hitting-paths model is the same as the bag-of-paths
model but the set of paths is now restricted to paths in which the ending node
does not appear more than once. In other words, no intermediate node on the
path is allowed to be the ending node j (node j is made absorbing) and the
motifs are now the hitting paths. Hitting paths plays an important role in the
derivation of the BoP betweenness in Chapter 5.
In fact, each non-hitting path ℘ij ∈ Pij can be split uniquely into two sub-
paths, before hitting node j for the first time, ℘h

ij ∈ Ph
ij (the set of all hitting

paths), and after hitting node j, ℘jj ∈ Pjj (see [94] for details). Notice the
usage of the superscript h to refer to hitting paths. The composition of the two
sub-paths is a valid path, where ℘h

ij ◦ ℘jj ∈ Pij is the concatenation of the two
paths.

In the case of a bag containing hitting paths, the probability of picking a
path i j is defined in a similar way as for non-hitting paths (Equation (4.3)),

Ph(s = i, e = j) =

∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈Ph

π̃ref(℘′) exp[−θc̃(℘′)]
(4.10)

and is called the bag-of-hitting-paths probability distribution.
Now, since c̃(℘ij) = c̃(℘h

ij) + c̃(℘jj) and π̃ref(℘ij) = π̃ref(℘h
ij)π̃

ref(℘jj) for
any ℘ij = ℘h

ij ◦ ℘jj , we easily obtain

zij =
∑

℘ij∈Pij

π̃ref(℘ij) exp[−θc̃(℘ij)]

=
∑

℘h
ij∈Ph

ij

∑
℘jj∈Pjj

π̃ref(℘h
ij) exp[−θc̃(℘h

ij)]

× π̃ref(℘jj) exp[−θc̃(℘jj)]
= zh

ijzjj . (4.11)
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From which we deduce zh
ij =

∑
℘∈Ph

ij
π̃ref(℘) exp[−θc̃(℘)] = zij/zjj . Now,

by analogy with Equation (4.9), but for hitting paths (Equation (4.10)),

Ph(s = i, e = j) =
zh
ij

n∑
i′=1

n∑
j′=1

zh
i′j′

=
zh
ij

Zh
(4.12)

and the partition function for the bag-of-hitting-paths is therefore

Zh =

n∑
i,j=1

zh
ij =

n∑
i,j=1

zij
zjj

(4.13)

Let us finally mention that another derivation is available in [94], where it is
further shown that zh

ij can be interpreted as either

I The expected reward endorsed by an agent (the reward along a path
℘ being defined as exp[−θc̃(℘)]) when traveling from i to j along all
possible hitting paths ℘ ∈ Phij with probability π̃ref(℘).

I The probability of surviving during the killed random walk from i to j
with transition probabilities wij and node j made killing and absorbing.
In other words, it corresponds to the probability of reaching absorbing
node j without being killed during the walk (i.e. the probability of sur-
viving).
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Chapter 5

Semi-supervised
classification through the
bag-of-paths group
betweenness

This chapter tackles the graph-based semi-supervised classification problem
(see Section 3.4) within the bag-of-paths (BoP) framework introduced in Chap-
ter 4. More precisely, we assume a weighted directed graph or network G
where a transition cost is associated to each arc, as described in Chapter 2. We
further consider, as detailed in Chapter 4, a bag containing all the possible
paths (or walks) between pairs of nodes in G. Then, a Boltzmann distribution,
depending on a temperature parameter T , is defined on the set of paths such
that long (high-cost) paths have a low probability of being picked from the bag,
while short (low-cost) paths have a high probability of being picked.

In this framework, the BoP probabilities, P(s = i, e = j), of sampling a
path starting in node i and ending in node j can easily be computed in closed
form by a simple n× n matrix inversion, where n is the number of nodes (for
more details, see Chapter 4 and in particular Equation 4.3).

Within this context, a betweenness measure quantifying to what extent a
node j is in-between two nodes i and k is defined. More precisely, the BoP
betweenness, betj =

∑n
i=1

∑n
k=1 P(int = j|s = i, e = k), of a node j of interest

is computed quite naturally as the sum of the a posteriori probabilities that
node j (the intermediate node) lies on a path between the two nodes i and k
sampled from the graph bag-of-paths according to a Boltzmann distribution.
Intuitively, a node receives a high betweenness if it has a large probability of
appearing on paths connecting two arbitrary nodes of the network.

For the group betweenness, the paths are constrained to start and
end in classes, therefore defining a group betweenness between classes,
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node 1

node 2

node 3

node 4

node 5

node 6

F I G U R E 5 . 1 : A small toy graph. According to the bag-of-
path classifier, node 3 belongs to the blue class and node 6
belongs to the red class. Dark red and blue nodes are training

samples. For this example θ was set to 1.

gbetj(Ci, Ck) = P(int = j|s ∈ Ci, e ∈ Ck). Unlabeled nodes are then classified
according to the class showing the highest group betweenness when starting
and ending within the same class. More details are given in Section 5.2.

The bag-of-paths classifier (just called BoP) will refer to the semi-
supervised classification algorithm based on the bag-of-paths group between-
ness and is further developed in Section 5.3. A toy example using the bag-of-
paths classifier can be found on Figure 5.1

This chapter (and the related paper, see Chapter 1) has three main contri-
butions:

I It develops both a betweenness measure and a group betweenness mea-
sure from a well-founded theoretical framework, the bag-of-paths frame-
work. These two measures can be easily computed in closed form.

I This group betweenness measure provides a new algorithm for graph-
based semi-supervised classification.

I It assesses the accuracy of the proposed algorithm on thirteen standard
data sets and compares it to state-of-the-art techniques. The obtained per-
formances are competitive with the other graph-based semi-supervised
techniques.

The main drawback of the proposed method is that it requires a matrix inver-
sion and therefore does not scale to large graphs.
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This chapter is organized as follows: related work in semi-supervised clas-
sification is discussed in Section 5.1. The bag-of-paths betweenness and group
betweenness centralities are introduced in Section 5.2.2. This enables us to
derive the BoP classifier in Section 5.3. Then experiments involving the BoP
classifier and baseline classifiers discussed in the related work section are de-
scribed in Section 5.4. Results and discussions of those experiments can be
found in Section 5.4.3. Finally, Section 5.5 concludes this chapter and opens a
reflection for further work.

5.1 Related work

Graph-based semi-supervised classification has been the subject of intensive re-
search in recent years and a wide range of approaches has been developed in or-
der to tackle the problem [2, 268, 58]: Random-walk-based methods [263, 226],
spectral methods [59, 136], regularization frameworks [262, 27, 248, 265], trans-
ductive and spectral SVM [132]. Many other approaches have been proposed
in different fields for classification in the presence of structural correlations,
such as kriging in spatial statistics [40, 68, 113, 192], spatial autoregressive
models in spatial econometrics [10, 157], various Laplacian-based regulariza-
tion frameworks for semi-supervised classification [219, 264], random-walk
based or label propagation models in machine learning [30].

We compared the BoP classifier to some of those techniques, namely,

1. A simple alignment with the regularized Laplacian kernel (RL) based on
a sum of similarities, KRLyc, where KRL = (I + λL)−1, L = D−A is the
Laplacian matrix, I is the identity matrix, D is the generalized outdegree
matrix, and A is the adjacency matrix of G [27, 140]. The similarity is
computed for each class c in turn. Then, each node is assigned to the
class showing the largest sum of similarities. The (scalar) parameter
λ > 0 is the regularization parameter [91, 168].

2. A simple alignment with the regularized normalized Laplacian kernel
(RNL) based on a sum of similarities, KRNLyc, where KRNL = (I+λL̃)−1,
and L̃ = D−1/2LD−1/2 is the normalized Laplacian matrix [265, 264].
The assignment to the classes is the same as for the previous method.
The regularized normalized Laplacian approach seems less sensitive to
the priors of the different classes than the un-normalized regularized
Laplacian approach (RL) [264].

3. A simple alignment with the regularized commute time kernel (RCT)
based on a sum of similarities, KRCTyc, with KRCT = (D− αA)−1 [265,
91]. The assignment to the classes is the same as for previous methods.
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Element i, j of this kernel can be interpreted as the discounted cumulated
probability of visiting node j when starting from node i. The (scalar) pa-
rameter α ∈ ]0, 1] corresponds to an evaporating or killed random walk
where the random walker has a (1−α) probability of disappearing at each
step. This method provided the best results in a previous comparative
study on semi-supervised classification [91].

4. The harmonic function (HF) approach [267, 2], is closely related to the
regularization framework of RL and RNL. Furthermore, it is equivalent
and provides the same results as the label propagation algorithm [58]
and the wvRN (or pRN) classifier used by the Netkit software as a base-
line [165], but Netkit is a more general-purpose toolbox able to tackle
more complex situations [104]. As those three algorithms give the same
results, we only report HF which appeared first in the litterature and is
fastest. It is based on a structural contiguity measure that smoothes the
predicted values and leads to a model having interesting interpretations
in terms of electrical potential and absorbing probabilities in a Markov
chain.

5. The random walk with restart (RWWR) classifier [188, 238] relies on
random walks performed on the weighted graph seen as a Markov chain.
More precisely, a group betweenness measure is derived for each class,
based on the stationary distribution of a random walk restarting from the
labeled nodes belonging to a class of interest. Each unlabeled node is then
assigned to the class showing maximal betweenness. In this version [91],
the random walker has a probability (1 − α) to be teleported – with a
uniform probability – to a node belonging to the class of interest c.

6. The discriminative random walks approach (D-walk or DW1; see [54])
also relies on random walks performed on the weighted graph. As for
the RWWR, a group betweenness measure, based on passage times dur-
ing random walks, is derived for each class. More precisely, a D-walk
is a random walk starting in a labeled node and ending when any node
having the same label (possibly the starting node itself) is reached for the
first time. During this random walk, the number of visits to any unla-
beled node is recorded and corresponds to a group betweenness measure.
As for the previous method, each unlabeled node is then assigned to the
class showing maximal betweenness.

7. A modified version of the D-walk (or DW2). The only difference is that
all elements of the transition matrix Pref (since the random walks is seen
as a Markov chain) are multiplied by α ∈ ]0, 1] so that α can be seen as
a probability of continuing the random walk at each time step (and so
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(1−α) ∈ [0, 1[ is the probability of stopping the random walk at each step.
This defines a killed random walk since αPref is now sub-stochastic.

Notice that the random walker of the random-walk-based methods usually
takes too long – and thus irrelevant – paths into account: popular entries are
therefore intrinsically favored [159, 48]. The bag-of-paths approach tackles this
issue by putting a negative exponential term in Equation (4.4) and part of its
success can be imputed to this fact.

Some authors also considered bounded (or truncated) walks [168, 210, 55]
and obtained promising results on large graphs.

Tong et al. suggested a method avoiding to take the inverse of an n×n ma-
trix for computing the random walk with restart measure [238]. They reduce
the computing time by partitioning the input graph into smaller communities.
Then, a sparse approximate of the random walk with restart is obtained by
applying a low rank approximation. This approach suffers from the fact that
it adds a hyperparameter k (the number of communities) that depends on the
network and is still untractable for large graphs with millions of nodes. On
the other hand, the computing time is reduced by this same factor k. This is
another track to investigate in further work.

Herbster et al. [120] proposed a technique for fast label prediction on graphs
through the approximation of the graph with either a minimum spanning tree
or a shortest path tree. Once the tree has been extracted, the pseudo inverse of
the Laplacian matrix has to be computed. The fast computation of the pseudo
inverse enables to address prediction problems on large graphs.

Finally, Tang and Liu have investigated relational learning via latent so-
cial dimensions [228, 229, 230]. They proposed to extract latent social dimen-
sions based on network information (such as Facebook, Twitter,...) first, then
they used these as features for discriminative learning (via a SVM, for exam-
ple [228]). Their approach tackles very large networks and provides promising
results, especially when only a few labeled data are available.

A lot of research has also been done on collective classification of nodes in
networks (see [105] for an introduction). Collective classification also uses the
graph topology and a proportion of labeled nodes to classify unlabeled nodes
using the same assumption as our proposed technique (i.e. local consistency
or homophily).

5.2 The bag-of-paths betweennesses

In order to define the BoP classifier, we need to introduce the BoP group be-
tweenness centrality. This concept is itself an extension of the BoP betweenness
centrality, which is developed first. The BoP betweenness is related to well-
known betweenness measures in some sense: if θ →∞ the BoP betweenness
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tends to be correlated with Freeman’s betweenness [96] (only shortest paths
are considered), while if θ → 0+, the BoP betweenness tends to be correlated
with Newman’s betweenness [181] (based on a natural random walk).

This section starts with the presentation of the BoP betweenness centrality
measure in Section 5.2.1. Then, its extension, the BoP group betweenness
centrality, is described in Section 5.2.2.

5.2.1 The bag-of-paths betweenness centrality

The BoP betweenness measure measures to what extent a node j is likely to lie
in-between other pairs of nodes i, k, and therefore is an important intermediary
between nodes. In short, the bag-of-paths betweenness measure is defined as

betj =

n∑
i=1

n∑
k=1

P(int = j|s = i, e = k; i 6= j 6= k 6= i) (5.1)

which corresponds to the a posteriori probability of finding intermediate node
int = j on a path i  k drawn from the bag of paths, cumulated over all
source-destination pairs i, k (with i 6= k).

For computing this quantity from the bag-of-paths framework, we first
have to calculate the probability P(s = i, int = j, e = k; i 6= j 6= k 6= i) – or Pijk
in short – that such paths visit an intermediate node int = j with i 6= j 6= k 6= i.
Indeed, by using Equations (4.2) and (4.3),

Pijk =
∑
℘∈Pik

δ(j ∈ ℘) P(℘)

=

∑
℘∈Pik

δ(j ∈ ℘) π̃ref(℘) exp [−θc̃(℘)]∑
℘′∈P

π̃ref(℘′) exp [−θc̃(℘′)]

=
1

Z
∑
℘∈Pik

δ(j ∈ ℘) π̃ref(℘) exp [−θc̃(℘)] (5.2)

where δ(j ∈ ℘) = 1 when node j is visited on path ℘, and 0 otherwise.
Each path ℘ik between i and k passing through j can be decomposed

uniquely into a hitting sub-path ℘ij from i to j and a regular sub-path ℘h
jk

from j to k (see Section 4.2). The sub-path ℘h
ij is found by following path ℘ik

42



Chapter 5. Semi-Supervised classification through the BoP group betweenness

until reaching j for the first time. Therefore, for i 6= j 6= k 6= i,

Pijk =
1

Z
∑

℘h
ij∈Ph

ij

∑
℘jk∈Pjk

π̃ref(℘h
ij)π̃

ref(℘jk)

× exp
[
−θc̃(℘h

ij)
]

exp [−θc̃(℘jk)] (5.3)

This equation can be reordered to get, for i 6= j 6= k 6= i :

Pijk =
1

Z

 ∑
℘h
ij∈Ph

ij

π̃ref(℘h
ij) exp

[
−θc̃(℘h

ij)
]

×

 ∑
℘jk∈Pjk

π̃ref(℘jk) exp [−θc̃(℘jk)]

 (5.4)

Then, after multiplying by Zh/Zh, we obtain

Pijk =
1

Z z
h
ijzjk = Zh

zh
ij

Zh

zjk
Z

= Zh Ph(s = i, e = j) P(s = j, e = k) (5.5)

with i 6= j 6= k 6= i and where we used Equations (4.11) and (4.12).
Finally, recalling Equations (4.9), (4.12),

Pijk =

(
zij
zjj

)
(zjk)

Z
=

1

Z
zijzjk
zjj

, with i 6= j 6= k 6= i

=
1

Z
zijzjk
zjj

δ(i 6= j 6= k 6= i) (5.6)

Now, using the Bayes’ rule, the a posteriori probabilitiy of finding interme-
diate node j on a path starting in i and ending in k is

P(int = j|s = i, e = k; i 6= j 6= k 6= i)

=
P(s = i, int = j, e = k; i 6= j 6= k 6= i)

n∑
j′=1

P(s = i, int = j′, e = k; i 6= j′ 6= k 6= i)

(5.7)
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Using Equation (5.6), if we assume that node k can be reached from node i,
this leads to

P(int = j|s = i, e = k; i 6= j 6= k 6= i)

=

(
zijzjk
zjj

)
n∑

j′=1
j′ 6={i,k}

(
zij′zj′k
zj′j′

)δ(i 6= j 6= k 6= i) (5.8)

Based on this a posteriori probability distribution, the bag-of-paths be-
tweenness of node j is defined as the sum of the a posteriori probabilities of
visiting j for all possible starting-ending pairs i, k:

betj =

n∑
i=1

n∑
k=1

P(int = j|s = i, e = k; i 6= j 6= k 6= i) (5.9)

=
1

zjj

n∑
i=1
i 6=j

n∑
k=1

k 6={i,j}

zijzjk
n∑

j′=1
j′ 6={i,k}

(
zij′zj′k
zj′j′

) (5.10)

which allows to compute the betweenness from the fundamental matrix Z
(Equation (4.6)).

Let us now derive the matrix formula providing the betweenness vector
bet, containing the betweennesses for each node. First of all, the normalization
factor appearing in the denominator of Equation (5.10), denoted here by nik, is
computed,

nik =

n∑
j′=1

(1− δij′)(1− δj′k) (zij′zj′k)/zj′j′ (5.11)

which can be re-written as

nik =

n∑
j′=1

{(1− δij′)zij′}{1/zj′j′}{(1− δj′k)zj′k} (5.12)

Therefore, the matrix containing the normalization factors nik is

N = (Z−Diag(Z)) (Diag(Z))−1(Z−Diag(Z)) (5.13)

where Diag(M) is a diagonal matrix containing the diagonal of matrix M.
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Moreover, the inner term appearing in Equation (5.10) can be rewritten as

n∑
i=1

n∑
k=1

δ(i 6= j 6= k 6= i)zij(1/nik)zjk

=

n∑
i=1

n∑
k=1

{(1− δji)zt
ji}{(1− δik)(1/nik)}{(1− δkj)zt

kj} (5.14)

where zt
ij is the element i, j of matrix ZT (transpose of Z). In matrix form, bet

(see Equation (5.8)) is therefore equal to

bet =(Diag(Z))−1diag
[
(ZT −Diag(Z))

× (N÷ −Diag(N÷))(ZT −Diag(Z))
]

(5.15)

with matrix N÷ containing elements n÷ik = 1/nik (elementwise reciprocal).

5.2.2 The bag-of-paths group betweenness centrality

Let us now generalize the bag-of-paths betweenness to a group betweenness
measure. The bag-of-paths group betweenness of node j will be defined as

gbetj(Ci, Ck) = P(int = j|s ∈ Ci, e ∈ Ck; s 6= int 6= e 6= s) (5.16)

and can be interpreted as the extent to which the node j lies in-between the
two subsets of nodes Ci and Ck. It is assumed that the sets {Ci}mi=1 are disjoint.
Using Bayes’ law provides

P(int = j|s ∈ Ci, e ∈ Ck; s 6= int 6= e 6= s)

=
P(s ∈ Ci, int = j, e ∈ Ck; s 6= int 6= e 6= s)

P(s ∈ Ci, e ∈ Ck; s 6= int 6= e 6= s)

=

∑
i′∈Ci

∑
k′∈Ck

P(s = i′, int = j, e = k′; s 6= int 6= e 6= s)

n∑
j′=1

∑
i′∈Ci

∑
k′∈Ck

P(s = i′, int = j′, e = k′; s 6= int 6= e 6= s)

(5.17)

Substituting (5.6) for the joint probabilities in Equation (5.17) allows to
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compute the group betweenness measure in terms of the elements of the fun-
damental matrix Z:

gbetj(Ci, Ck) =

∑
i′∈Ci

∑
k′∈Ck

δ(i′ 6= j 6= k′ 6= i′)
zi′jzjk′

zjj

n∑
j′=1

∑
i′∈Ci

∑
k′∈Ck

δ(i′ 6= j′ 6= k′ 6= i′)
zi′j′zj′k′

zj′j′

(5.18)

where the denominator is simply a normalization factor ensuring that the prob-
ability distribution sums to one. It is therefore sufficient to compute the nu-
merator only and then normalize the resulting quantity.

Let us put this expression in matrix form. As before, we denote element i, j
of matrix ZT as zt

ij . It is also assumed that nodes i′ and k′ belong to different
groups, Ci 6= Ck, so that i and k are necessarily different (moreover, classes are
disjoint). The numerator in Equation (5.18) is

num(gbetj(Ci, Ck))

=
1

zjj

∑
i′∈Ci

∑
k′∈Ck

(1− δji′)(1− δjk′) zi′jzjk′

=
1

zjj

(∑
i′∈Ci

(1− δji′)zt
ji′

)( ∑
k′∈Ck

(1− δjk′)zjk′
)

(5.19)

If yci is a binary indicator indicating if node i belongs to the class c (as
described in the introduction of Chapter 4), the numerator can be rewritten as

num(gbetj(Ci, Ck))

=
1

zjj

(
n∑

i′=1

(1− δji′)zt
ji′y

i
i′

)(
n∑

k′=1

(1− δjk′)zjk′ykk′
)

(5.20)

Consequently, in matrix form, the group betweenness vector reads
gbet(Ci, Ck)← (Diag(Z))−1

(
(ZT

0yi) ◦ (Z0y
k)
)

with Z0 = Z−Diag(Z),

gbet(Ci, Ck)← gbet(Ci, Ck)

‖gbet(Ci, Ck)‖1
(normalization)

(5.21)

where we assume i 6= k. In this equation, the vector gbet(Ci, Ck) must be
normalized by dividing it by its L1 norm. Notice that Z0 = Z −Diag(Z) is
simply the fundamental matrix whose diagonal is set to zero.
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5.3 Semi-supervised classification through the bag-
of-paths group betweenness

In this section, the bag-of-paths framework ( more precisely the bag-of-paths
group betweenness measure) is used for classification purposes. Notice, how-
ever, that in the derivation of the group betweenness measure (see Equa-
tion (5.21)), it was assumed that the starting and ending classes are different
(Ci 6= Ck). We now recompute this quantity when starting and ending in the
same class c, i.e. calculating gbetj(Cc, Cc), which provides a within-class be-
tweenness. Indeed, this quantity measures to what extent the nodes of G are
in-between – and therefore in the neighborhood of – the nodes of class c.

A within-class betweenness is thus computed for each class c and each node
is assigned to the class showing the highest betweenness. This is our simple
classification rule based on the within-class betweenness. The main hypothesis
underlying this classification technique is that a node is likely to belong to the
same class as its neighboring nodes. This is usually called the local consistency
assumption (also called smoothness, homophily or cluster assumption [267, 58,
149], see Section 3.2).

The same reasoning as for deriving Equation (5.21) is applied in order to
compute the numerator of (5.18) in this new case. We start with Equation (5.18),
considering now the same starting and ending class c but multiplying the term
inside the double sum by (1 − δi′k′). This new term ensures that the starting
node is different from the ending node (this was always the case with different
starting and ending classes, but now this must be forced). From Equation (5.19),
this can be rewritten as

num(gbetj(Cc, Cc)) =
1

zjj

∑
i′,k′∈Cc

(1− δji′)(1− δi′k′)

× (1− δjk′) zi′jzjk′ (5.22)

num(gbetj(Cc, Cc)) is thus the same as num(gbetj(Ci, Ck)) with Ci = Cc of Equa-
tion (5.19) and Ck = Cc, plus an extra term:

num(gbetj(Cc, Cc)) =

1

zjj

∑
i′∈Cc

∑
k′∈Cc

(1− δji′)(1− δjk′) zi′jzjk′

− 1

zjj

∑
i′∈Cc

∑
k′∈Cc

(1− δji′)δi′k′(1− δjk′) zi′jzjk′ (5.23)
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TA B L E 5 . 1 : The eight classifiers, the value range tested for
tuning their parameters and the most selected values. Mode1
is the most selected value, Mode2 is the second most selected
value, and Mode3 is the third most selected value. Notice that

DW2 with α = 1.0 is the same as DW1.

Classifier name Acronym Parameter Tested values Mode1 Mode2 Mode3
Regularized Laplacian kernel RL λ > 0 10−6, 10−5, ..., 106 10−6

12.3% 10−1
11.7% 10−2

11.5%

Regularized normalised Laplacian kernel RNL λ > 0 10−6, 10−5, ..., 106 10−1
42.1% 10−2

13.9% 10−3
09.3%

Regularized commute-time kernel RCT α ∈ ]0, 1] 0.1, 0.2, ..., 1 0.9 28.0% 0.8 16.2% 0.7 12.2%

Harmonic function HF none − − − −
Random walk with restart RWWR α ∈ ]0, 1] 0.1, 0.2, ..., 1 0.9 45.8% 0.8 16.8% 0.7 10.1%

Discriminative random walks DW1 none − − − −
Killed discriminative random walks DW2 α ∈ ]0, 1] 0.1, 0.2, ..., 1 1.0 19.5% 0.1 11.8% 0.9 11.2%

BoP classifier BoP θ > 0 10−6, 10−5, ..., 102 10−4
28.3% 10−3

25.9% 10−2
12.3%

It is easy to show that with this additional term, the matrix equation for
num(gbet(Cc, Cc)) (Equation (5.21)) becomes [156]

num(gbet(Cc, Cc))
= (Diag(Z))−1

[
(ZT

0yc) ◦ (Z0y
c)− (ZT

0 ◦ Z0)yc
]

(5.24)

Once again, this is the same result as in Equation (5.21) with one more term
that ensures that the starting node is different from the ending node. After
having computed this equation, the numerator must be normalized in order
to obtain gbet(Cc, Cc) (as for Equation (5.21)).

Finally, if we want to classify a node, gbet(Cc, Cc) is computed for each
class c in turn and then, for each node, the class label showing the maximal
betweenness is chosen,

ŷ = arg max
c∈L

{gbet(Cc, Cc)}, with
Dz = Diag(Z); Z0 = Z−Dz (set diagonal to 0)
gbet(Cc, Cc)← D−1

z
[
(ZT

0yc) ◦ (Z0y
c)− (ZT

0 ◦ Z0)yc
]

gbet(Cc, Cc)←
gbet(Cc, Cc)
‖gbet(Cc, Cc)‖1

(normalization)

(5.25)

where L is the set of class labels. The pseudo-code for the BoP classifier can be
found in Algorithm 1. Of course, once computed, the group betweenness is
only used to classify the unlabeled nodes.
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Algorithm 1 Classification through the bag-of-paths group betweenness
algorithm.
Input:

– A weighted directed graph G containing n nodes, represented by its n× n adja-
cency matrix A, containing affinities.
– The n× n transition cost matrix C associated to G.
– m binary indicator vectors yc containing as entries 1 for nodes belonging to the
class Cc, and 0 otherwise. Classes are mutually exclusive.
– The inverse temperature parameter θ.

Output:
– The n× 1 vector ŷ containing the predicted class labels of each node.

1: D← Diag(Ae) . the row-normalization matrix
2: Pref ← D−1A . the reference transition probabilities matrix
3: W← Pref ◦ exp [−θC] . elementwise exponential and multiplication ◦
4: Z← (I−W)−1 . the fundamental matrix
5: Z0 ← Z−Diag(Z) . set diagonal to zero
6: Dz ← Diag(Z)
7: for c = 1 to m do
8: gbetc ← D−1

z
[
(ZT

0y
c) ◦ (Z0yc)− (ZT

0 ◦Z0)y
c
]

. compute the group between-
ness for class c; ◦ is the elementwise multiplication (Hadamard product)

9: gbetc ←
gbetc
‖gbetc‖1

. normalize the betweenness scores

10: end for
11: ŷ ← argmax

c∈L
(gbetc) . each node is assigned to the class showing the largest

class betweenness
12: return ŷ

5.4 Experimental comparisons

In this section, the bag-of-paths group betweenness approach for semi-
supervised classification (referred to as the BoP classifier for simplicity) is com-
pared to other semi-supervised classification techniques on multiple datasets.
The different classifiers to which the BoP classifier is compared were already
introduced in Section 5.1 and are recalled in Table 5.1.

The goal of the experiments of this section is to classify unlabeled nodes in
partially labeled graphs and to compare the different methods in terms of clas-
sification accuracy. This comparison is performed on medium-size networks
only since kernel approaches are difficult to compute on large networks. The
computational tractability of the methods used in this experimental section is
also analyzed.

This section is organized as follows: First, datasets are described in Sec-
tion 5.4.1. Second, the experimental methodology is detailed in Section 5.4.2.
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TA B L E 5 . 2 : Class distribution of the nine Newsgroups
datasets. NG 1-3 contain two classes, NG 4-6 contain three

classes, and NG 7-9 contain five classes.

Class NG1 NG2 NG3 NG4 NG5 NG6 NG7 NG8 NG9

1 200 198 200 200 200 197 200 200 200
2 200 200 199 200 198 200 200 200 200
3 200 200 198 200 198 197
4 200 200 200
5 198 200 200

Total 400 398 399 600 598 595 998 998 997

TA B L E 5 . 3 : Class distribution of the IMDb-proco dataset.

Class IMDb

High-revenue 572
Low-revenue 597

Total 1169

Third, the results are discussed in Section 5.4.3. Fourth, the computation time
is investigated in Section 5.4.4. Finally, some extreme cases are studied in
Section 5.4.5.

5.4.1 Datasets

The different classifiers are compared on 14 datasets that have been used pre-
viously for semi-supervised classification: nine Newsgroups datasets [153],
the four universities WebKB cocite datasets [165, 262], and the IMDb prodco
dataset [165]. The different datasets used for these comparisons are de-
scribed in Section 5.4.1. Implementations and datasets are available at http:
//www.isys.ucl.ac.be/staff/lebichot/research.htm and https:
//b-lebichot.github.io/.

Newsgroups: The Newsgroups dataset is composed of about 20,000 un-
structured documents, taken from 20 discussion groups (newsgroups) of the
Usenet diffusion list. 20 Classes (or topics) were originally present in the
dataset. For our experiments, nine subsets related to different topics are ex-
tracted from the original dataset, resulting in a total of nine different datasets.
The datasets were built by sampling about 200 documents at random in each
topic (three samples of two, three, and five classes, thus nine samples in total).
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TA B L E 5 . 4 : Class distribution of the four WebKB cocite
datasets.

Class Cornell Texas Washington Wisconsin

Course 54 51 170 83
Department 25 36 20 37
Faculty 62 50 44 37
Project 54 28 39 25
Staff 6 6 10 11
Student 145 163 151 155

Total 346 334 434 348
Majority
class (%) 41.9 48.8 39.2 44.5

The repartition is listed in Table 5.2. The extraction process and the procedure
used for building the graph are detailed in [258].

WebKB cocite: These datasets consist of sets of web pages gathered from
four computer science departments (four datasets, one for each university),
with each page manually labeled into one of six categories: course, department,
faculty, project, staff, and student [165]. The pages are linked by co-citation
(if x links to z and y links to z, then x and y are co-citing z), resulting in an
undirected graph. The composition of the datasets is shown in Table 5.4.

IMDb-prodco: The collaborative Internet Movie Database (IMDb, [165])
has several applications such as making movie recommendations or movie
category classification. The classification problem focuses on the prediction of
whether the movie is a box-office hit or not. It contains a graph of movies linked
together whenever they share the same production company and weight of
an edge in the graph is the number of production companies that two movies
have in common. The class distribution is shown in Table 5.3.

5.4.2 Experimental methodology

The classification accuracy is reported for several labeling rates (10%, 30%,
50%, 70%, 90%), i.e. proportions of nodes for which the label is known. The
labels of remaining nodes are deleted during the modeling phase and are used
as test data during the assessment phase. For each considered labeling rate,
5 random node label deletions were performed (5 runs). For each unlabeled
node, the various classifiers predict the most suitable category. For each run,
a 10-fold nested cross-validation is performed for tuning the parameters of
the models. The external folds are obtained by 10 successive rotations of the
nodes and the performance of one specific run is the average over these 10 folds.
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F I G U R E 5 . 2 : Classification accuracies in percents, averaged
over 5 runs, obtained on partially labeled graphs. Results are
reported for the eight methods (RL, RNL, RCT, HF, RWWR,
DW1, DW2, BoP) and for five labeling rates (10%, 30%, 50%,
70%, 90%). This graphs shows the results obtained on the

NewsGroups (NG2) dataset.

Moreover, for each fold of the external cross-validation, a 10-fold internal cross-
validation is performed on the remaining labeled nodes in order to tune the
hyperparameters of the classifiers (i.e. parameters α, λ and θ (see Table 5.1)
– methods HF and DW1 do not have any hyperparameter). Thus, for each
method and each labeling rate, the mean classification accuracy averaged on
the 5 runs are reported.

5.4.3 Results & discussion

Comparative results for each method on the fourteen datasets are reported as
follows: the results on the nine NewsGroups datasets, on the four WebKB
Cocite datasets and on the IMBd-prodco dataset are shown in Table 5.5. The
results of the second NewsGroups dataset are also reported as a plot on Fig-
ure 5.2 to visualize the typical relation between classification accuracy and
labeling rate. For convenience, the acronyms of the tested methods are sum-
marized in Table 5.1.
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2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

4 groups have mean column ranks significantly different from RCT

BoP

DW2

DW1

RWWR

HF

RCT

RNL

RL

Friedman/Nemenyi test with 90% labeling rate

F I G U R E 5 . 3 : Mean rank (circles) and critical difference
(plain line) of the Friedman/Nemenyi test. Results are re-
ported for the eight methods (RL, RNL, RCT, HF, RWWR,
DW1, DW2, BoP) and for a 90% labeling rate. The critical

difference is 1.2546.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

5 groups have mean column ranks significantly different from BoP

BoP

DW2

DW1

RWWR

HF

RCT

RNL

RL

Friedman/Nemenyi test with 70% labeling rate

F I G U R E 5 . 4 : Friedman/Nemenyi test for a 70% labeling
rate. See Figure 5.3 for details.
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2 3 4 5 6 7 8

5 groups have mean column ranks significantly different from BoP

BoP

DW2

DW1

RWWR

HF

RCT

RNL

RL

Friedman/Nemenyi test with 50% labeling rate

F I G U R E 5 . 5 : Friedman/Nemenyi test for a 50% labeling
rate. See Figure 5.3 for details.

1 2 3 4 5 6 7 8

7 groups have mean column ranks significantly different from BoP

BoP

DW2

DW1

RWWR

HF

RCT

RNL

RL

Friedman/Nemenyi test with 30% labeling rate

F I G U R E 5 . 6 : Friedman/Nemenyi test for a 30% labeling
rate. See Figure 5.3 for details.
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0 1 2 3 4 5 6 7 8

6 groups have mean column ranks significantly different from BoP

BoP

DW2

DW1

RWWR

HF

RCT

RNL

RL

Friedman/Nemenyi test with 10% labeling rate

F I G U R E 5 . 7 : Friedman/Nemenyi test for a 10% labeling
rate. See Figure 5.3 for details.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

7 groups have mean column ranks significantly different from BoP

BoP

DW2

DW1

RWWR

HF

RCT

RNL

RL

Friedman/Nemenyi test across all labeling rates

F I G U R E 5 . 8 : Friedman/Nemenyi test. Results are reported
for the eight methods (RL, RNL, RCT, HF, RWWR, DW1,
DW2, BoP) and for the five labeling rates together (10%, 30%,

50%, 70%, 90%). The Critical Difference is 0.5603.
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TA B L E 5 . 5 : Classification accuracies in percents ± the
standard deviation, averaged over the 5 runs, obtained on
partially labeled graphs. Results are reported for the eight
method, for the five labeling rates and all the tested datasets.

l RL RNL RCT HF RWWR DW1 DW2 BoP

N
G

1

90% 98.90±0.22 98.95±0.11 97.90±0.22 97.40±0.38 97.90±0.22 96.95±0.21 98.05±0.33 98.35±0.22
70% 98.02±0.37 98.16±0.19 97.09±0.13 97.12±0.28 97.07±0.08 96.30±0.74 97.78±0.12 97.63±0.04
50% 97.75±0.39 97.79±0.15 97.23±0.15 96.60±0.65 96.93±0.10 95.46±0.76 97.47±0.07 97.54±0.22
30% 95.19±4.10 97.50±0.22 97.03±0.04 95.94±0.61 97.02±0.08 94.27±0.55 97.62±0.02 97.48±0.15
10% 95.90±1.96 96.83±0.06 96.95±0.11 87.43±1.03 97.24±0.06 88.26±0.29 97.20±0.00 97.11±0.16

N
G

2

90% 96.65±0.14 96.35±0.22 97.30±0.33 95.78±0.21 97.30±0.21 96.08±0.42 96.45±0.11 96.20±0.21
70% 95.17±2.04 95.53±0.43 95.97±0.27 95.48±0.33 96.14±0.17 95.32±0.42 96.17±0.11 96.17±0.05
50% 93.02±3.44 94.94±0.33 94.89±0.04 94.68±0.45 95.38±0.08 94.07±0.71 95.56±0.03 95.37±0.33
30% 94.68±0.56 93.50±2.15 93.88±0.15 93.90±0.57 94.49±0.05 91.60±0.80 94.60±0.08 94.92±0.15
10% 93.87±1.20 93.77±0.16 93.64±0.22 87.65±1.76 93.79±0.05 83.03±0.83 93.84±0.04 94.03±0.43

N
G

3

90% 96.15±0.14 95.55±0.11 97.45±0.27 96.79±0.21 97.50±0.00 96.94±0.57 95.90±0.22 97.65±0.29
70% 96.03±0.04 96.14±0.16 97.06±0.18 96.67±0.44 97.07±0.08 96.89±0.44 95.99±0.04 97.54±0.17
50% 96.03±0.03 96.17±0.46 96.86±0.10 96.57±0.24 96.76±0.12 96.66±0.42 95.98±0.00 97.08±0.40
30% 95.86±0.10 95.71±0.11 96.44±0.17 95.83±0.10 96.76±0.09 95.65±0.17 95.94±0.02 96.70±0.31
10% 90.93±2.09 94.68±0.11 96.12±0.09 83.52±1.31 96.58±0.06 91.96±0.45 95.82±0.00 96.26±0.28

N
G

4

90% 95.17±0.00 95.97±0.07 95.43±0.30 94.87±0.22 95.43±0.30 94.87±0.25 94.80±0.14 95.27±0.19
70% 91.94±3.55 94.71±0.19 94.22±0.09 94.88±0.20 94.17±0.07 95.04±0.40 94.25±0.08 94.36±0.25
50% 91.49±2.99 93.56±0.15 93.24±0.08 94.42±0.27 93.22±0.08 94.24±0.58 93.86±0.02 93.89±0.17
30% 90.68±2.90 93.31±0.13 92.86±0.05 92.90±0.32 93.14±0.09 92.57±0.42 93.50±0.05 93.52±0.12
10% 90.46±2.74 92.15±0.29 92.50±0.21 75.03±1.28 92.65±0.20 85.71±0.35 92.44±0.02 92.97±0.29

N
G

5

90% 95.47±0.07 95.67±0.00 95.87±0.22 95.06±0.26 96.00±0.20 94.86±0.28 95.83±0.12 95.50±0.35
70% 94.70±0.20 94.43±0.00 94.81±0.16 94.78±0.26 94.97±0.11 94.53±0.34 94.27±0.13 94.54±0.22
50% 91.91±2.71 92.60±0.00 93.42±0.24 93.90±0.19 94.42±0.12 93.70±0.21 93.74±0.05 94.55±0.18
30% 90.08±2.68 90.39±0.07 92.62±0.36 91.43±0.25 93.61±0.21 91.71±0.19 92.96±0.02 94.16±0.40
10% 87.10±5.04 85.05±0.58 91.21±0.33 77.50±0.43 92.52±0.23 84.11±0.30 92.54±0.01 92.55±0.54

N
G

6

90% 94.00±0.00 92.50±0.00 96.37±0.14 94.31±0.22 96.33±0.17 93.94±0.52 95.23±0.09 96.13±0.18
70% 92.49±0.03 91.07±0.04 95.99±0.13 93.32±0.17 96.13±0.14 94.03±0.22 94.00±0.12 95.92±0.20
50% 91.44±0.09 90.36±0.08 94.92±0.17 91.52±0.23 95.35±0.05 93.06±0.42 93.45±0.09 95.24±0.26
30% 89.86±0.05 88.48±0.20 93.59±0.29 88.30±0.37 94.50±0.12 90.75±0.32 92.40±0.05 94.47±0.32
10% 87.12±2.41 86.44±0.23 92.67±0.27 73.73±1.08 93.58±0.17 83.28±0.40 91.66±0.04 92.76±0.38

N
G

7

90% 93.10±0.10 91.96±0.23 93.30±0.07 92.28±0.29 93.26±0.05 92.34±0.46 93.28±0.19 93.22±0.04
70% 92.29±0.08 91.18±0.34 92.37±0.10 91.30±0.25 92.35±0.09 91.66±0.29 92.66±0.02 92.59±0.11
50% 90.58±1.65 90.35±0.01 91.85±0.09 89.90±0.17 91.86±0.12 90.46±0.30 92.18±0.05 91.70±0.23
30% 89.19±3.13 89.52±0.46 90.75±0.17 87.22±0.22 91.38±0.08 88.43±0.18 91.28±0.04 91.12±0.16
10% 88.10±1.17 88.72±0.15 89.95±0.21 69.55±0.78 90.76±0.07 80.10±0.23 90.03±0.03 90.88±0.16

N
G

8

90% 88.60±0.12 89.30±0.00 89.72±0.08 88.65±0.48 89.72±0.13 88.37±0.33 88.96±0.09 88.72±0.32
70% 89.10±0.10 89.18±0.24 89.33±0.05 87.92±0.36 89.41±0.09 87.92±0.47 89.52±0.07 89.29±0.10
50% 87.89±0.38 86.78±0.09 88.02±0.05 86.52±0.36 88.34±0.10 86.42±0.37 88.08±0.10 88.50±0.13
30% 86.92±0.08 83.41±0.72 86.60±0.35 83.16±0.27 87.69±0.06 83.30±0.32 87.08±0.04 88.05±0.11
10% 84.61±2.16 83.88±0.87 85.70±0.16 62.80±1.11 86.65±0.11 73.46±0.36 85.82±0.03 87.33±0.26

N
G

9

90% 87.52±0.15 87.38±0.04 87.26±0.15 88.72±0.15 87.40±0.12 87.88±0.18 87.70±0.07 87.64±0.15
70% 86.44±0.05 87.11±0.00 87.30±0.11 87.19±0.26 87.39±0.13 87.01±0.32 86.47±0.06 87.58±0.17
50% 85.40±0.13 85.99±0.00 86.85±0.15 85.82±0.27 87.27±0.08 85.80±0.11 85.85±0.08 87.01±0.19
30% 84.05±0.44 83.20±0.15 86.16±0.14 82.21±0.50 86.60±0.03 82.91±0.26 85.01±0.02 86.65±0.22
10% 81.64±0.71 79.87±0.58 84.81±0.41 69.06±0.68 86.36±0.08 72.82±0.33 84.07±0.10 85.66±0.41

C
or

ne
ll

90% 59.42±1.33 52.95±0.86 65.32±1.42 63.18±0.27 56.42±0.14 60.74±0.51 60.21±0.57 60.11±1.11
70% 59.04±0.76 52.17±1.31 63.97±0.52 60.58±1.00 57.84±0.24 58.19±0.67 59.14±0.33 61.50±2.31
50% 55.03±1.35 46.80±1.52 61.54±1.64 56.88±0.75 56.20±0.12 54.64±1.03 56.88±0.24 61.15±2.20
30% 50.09±2.97 44.27±0.16 60.64±1.33 50.31±0.45 54.80±0.29 51.31±0.42 55.93±0.40 60.14±2.99
10% 47.98±0.55 43.12±0.25 56.98±1.12 42.81±0.26 57.17±0.21 48.02±1.35 58.31±0.07 59.01±3.26

Te
xa

s

90% 72.17±0.12 68.83±0.66 78.44±0.58 74.38±0.73 79.22±0.36 82.06±0.46 81.78±0.89 82.22±0.39
70% 71.24±0.21 68.26±0.30 78.45±0.39 72.54±1.11 78.57±0.20 80.62±0.35 79.58±0.45 80.88±0.69
50% 68.99±0.18 65.45±0.14 77.50±0.51 69.29±0.69 76.58±0.48 79.20±0.79 77.90±0.20 79.64±0.76
30% 67.00±0.05 61.73±0.71 76.45±0.78 65.66±0.75 73.18±0.42 76.89±0.45 76.66±0.13 78.06±0.23
10% 64.56±0.92 58.58±0.51 72.99±2.01 51.25±0.30 70.55±0.56 69.68±1.05 74.24±0.10 75.40±1.93

W
as

hi
ng

to
n 90% 68.53±0.20 63.56±0.00 70.40±0.51 66.99±0.72 61.96±0.10 61.50±0.64 58.31±0.12 64.49±0.19

70% 62.39±1.83 63.65±0.00 69.40±0.52 65.76±0.62 59.74±0.37 59.87±0.69 55.46±0.09 64.31±0.67
50% 62.11±1.21 64.38±0.00 67.86±0.54 63.84±0.62 58.76±0.62 56.36±1.79 55.43±0.12 60.82±0.87
30% 60.44±1.29 64.74±0.33 66.18±0.87 59.97±1.01 57.72±0.53 53.40±1.65 55.67±0.15 59.86±1.85
10% 51.62±2.84 59.87±3.48 65.36±0.69 42.41±0.52 54.30±1.22 45.85±1.16 53.00±0.31 61.66±0.61

W
is

co
ns

in 90% 71.42±0.14 67.84±0.34 74.21±0.19 75.08±0.43 73.42±0.00 80.34±0.80 77.26±0.35 73.53±0.14
70% 70.45±0.17 67.33±0.09 75.21±0.16 73.61±0.22 71.79±0.09 79.59±1.05 75.48±0.26 74.35±0.08
50% 69.25±0.06 66.93±0.11 75.62±0.27 72.00±0.18 69.09±0.20 77.86±1.27 75.32±0.30 75.12±0.67
30% 68.12±0.00 66.31±0.06 75.73±0.37 68.83±0.45 69.40±0.36 73.93±1.07 74.49±0.60 75.44±0.26
10% 67.29±0.00 63.70±1.22 75.45±1.00 53.85±0.97 63.48±2.21 65.53±0.39 72.65±0.61 73.89±1.29

IM
D

b

90% 83.37±0.15 83.10±1.32 83.51±0.20 76.89±2.65 83.64±0.20 50.85±0.13 84.02±0.24 82.81±0.20
70% 74.28±2.90 66.59±3.55 82.73±0.25 55.49±2.73 82.44±0.21 50.58±0.26 81.71±0.10 81.80±0.26
50% 64.48±4.58 59.26±1.71 81.72±0.17 51.04±0.05 81.71±0.19 52.48±4.20 81.10±0.03 81.18±0.25
30% 53.71±3.09 50.66±0.03 80.78±0.18 50.99±0.04 80.75±0.30 57.95±5.33 80.12±1.31 80.97±0.31
10% 50.60±0.00 50.61±0.01 79.64±0.31 50.98±0.02 79.58±0.14 73.93±2.52 80.03±0.03 80.56±0.34
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The most selected values of the parameters for each method are also re-
ported in Table 5.1. With each method, all the tested values were selected at
least once. RNL, RCT, RWWR, and BoP selected a short range of parameters.
Conversely, some methods, such as RL and DW2, selected a very wide range
of parameters, and the different most represented values are not grouped.

The different classifiers have been compared across datasets through a
Friedman test and a Nemenyi post-hoc test [74] (see Appendix A). The Fried-
man test is a non-parametric equivalent of the repeated-measures ANOVA. It
ranks the methods for each dataset separately, the best algorithm getting the
rankm, the second best rankm−1, . . . Once the null hypothesis (the mean rank-
ing of all methods is equal, meaning all classifiers are equivalent) is rejected
with p-value < 0.05, the (non parametric) posthoc Nemenyi test is then com-
puted. Notice that all Friedman tests were found to be positive. The Nemenyi
test determines whether or not each method is significantly better (p-value less
than 0.05 based on the 5 runs) to another.

Friedman/Nemenyi tests are reported for each labeling rate on Figure 5.3
to Figure 5.7. Furthermore, a Friedman/Nemenyi test across all labeling rate
is presented on Figure 5.8.

We observe that the BoP classifier always achieved competitive results since
it ranges among the top methods on all datasets. The BoP classifier actually
tends to be the best algorithm for all labeling rates except for the 90% label-
ing rate, where it cannot be significantly be discriminated from most of other
methods from Figure 5.3. Notice that the BoP classifier is significantly better
than all other methods on Figures 5.6 (labeling rate equal to 30%) and 5.8 (all
labeling rates). It is also almost the case for Figures 5.7 (labeling rate equal to
10%).

The RCT method is often second and is the best of the kernel-based classi-
fiers (as suggested in [91]). The RWWR kernel also achieves good performance
and is often close to RCT. This last method is also the best algorithm when the
labeling rate is very high (90%).

Notice that RWWR, RCT, and DW2 largely outperform the other algorithms
(besides BoP). However, it is difficult to figure out which of those three meth-
ods is the best, after BoP. It can be noticed that the DW2 version of the D-walk
is more competitive when the labeling rate is low and that it performs signifi-
cantly better than the DW1 version, for almost all labeling rates.

From the fifth to the eighth position, the ranking is less clear since none of
the methods is really better than the other. However, most of these methods
(NR, RNL, HF, and DW1) are significantly worse than BoP, RCT, RWWR, and
DW2. Notice also that the performance of DW1, and HF drops significantly
when labeling rate decreases.
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TA B L E 5 . 6 : Overview of cpu time in seconds needed to clas-
sify all the unlabeled nodes. Results are averaged on 20 runs.
The CPU used was an Intel(R)Core(TM)i3 at 2.13 Ghz with
3072 Ko of cache size and 6 GB of RAM and the programming

language is Matlab.

RL RNL RCT HF RWWR DW1 DW2 BoP
Exp1: 1000 nodes, 2 classes 0.0872 0.4937 0.0751 0.1680 0.3480 0.6826 0.6772 0.4997
Exp2: 2000 nodes, 2 classes 0.4616 3.4961 0.4225 0.9618 2.0441 4.5561 4.5858 3.0574
Exp3: 4000 nodes, 2 classes 2.8274 27.0695 2.5949 7.1481 14.1116 35.7161 36.0207 22.393
Ratio Exp2/Exp1 5.2935 7.0814 5.6258 5.7250 5.8739 6.6746 6.7717 6.1185
Ratio Exp3/Exp2 6.1252 7.7428 6.1418 7.4320 6.9036 7.8392 7.8548 7.3242
Exp2: 2000 nodes, 2 classes 0.4616 3.4961 0.4225 0.9618 2.0441 4.5561 4.5858 3.0574
Exp4: 2000 nodes, 4 classes 0.5011 3.4563 0.4036 1.2064 3.4249 8.5048 8.4003 3.2535
Exp5: 2000 nodes, 8 classes 0.4813 3.8449 0.4482 1.5748 6.0697 16.0031 16.3956 3.5868
Ratio Exp4/Exp2 1.0856 0.9886 0.9553 1.2543 1.6755 1.8667 1.8318 1.0641
Ratio Exp5/Exp4 0.9605 1.1124 1.1105 1.3054 1.7722 1.8817 1.9518 1.1024

5.4.4 Computation time

The computational tractability of a method is an important consideration to
take into account. Table 5.6 provides a comparison of the running time of all
methods. To explore computation time with respect to the number of nodes
and the number of classes, artificial graphs with a certain number of classes
have been created. For each method, 20 runs on each of the datasets are per-
formed and the running time is recorded for each run. The 20 running times
are averaged and results are reported in Table 5.6.

We observe that HF is one of the quickest methods, but sadly it is not
competitive in terms of accuracy, as reported in Section (5.4.3). Notice that the
two kernel methods, RL and RCT, have more or less the same computation time
since the alignment is done once for all the classes. RNL, the last kernel method,
is slower than RL, HF, and RCT (because of the time-consuming normalisation).
After the HF and the kernel methods, the BoP classifier achieves competitive
results compared with the remaining classifiers. The time augmentation when
the graph size increases is similar for all methods (except for RL and RCT for
which the augmentation is smaller). The cause is that all those methods require
a matrix inversion: the complexity of such an operation isO(n3) (where n is the
number of nodes) and this is what can be observed from Table 5.6 (when the
number of nodes doubles, the time is more or less multiplied by eight). But the
BoP classifier has the same advantage as the kernel methods: its computation
time does not increase strongly when the number of classes increases. This
comes from the algorithm structure: Unlike RWWR, DW1, and DW2, the BoP
classifier does not require a matrix inversion for each class. Furthermore, the
matrix inversions (or linear systems of equations to solve) required for the BoP
can be computed as far as the graph (through its adjacency matrix) is known,
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TA B L E 5 . 7 : Classification accuracies in percents, averaged
over 20 runs, obtained on partially labeled artificial graphs.
Results are reported for the eight methods (RL, RNL, RCT, HF,
RWWR, DW1, DW2, BoP). Only two labels is the case where
only two labeled nodes per class are known. Imbalanced is the
case where one of the classes is much more represented than
the other (labeling rate is 50%): Major stands for the majority

class and Minor stands for the minority class.

RL RNL RCT HF RWWR DW1 DW2 BoP
Only two labels 51.9 ± 1.4 52.6 ± 2.6 84.0 ± 2.5 50.0 ± 0.05 84.0 ± 2.5 51.9 ± 0.5 67.3 ± 2.8 83.0 ± 3.1

Imbalanced: Major 98.2 ± 0.04 98.2 ± 0.04 98.1 ± 0.08 99.9 ± 0.04 95.5 ± 0.03 88.7 ± 7.0 93.8 ± 2.5 96.8 ± 0.4
Imbalanced: Minor 42.4 ± 4.2 43.8 ± 3.3 32.2 ± 2.0 1.9 ± 2.4 11.6 ± 10.5 38.5 ± 0.0 17.2 ± 2.7 11.9 ± 2.5

which is not the case with kernel methods. This is a good property for BoP,
since it means that rows 1 to 6 of Algorithm 1 can be pre-computed once for
all folds in the cross-validation. Finally, the space complexity is O(n2) for all
the methods.

5.4.5 Extreme cases

In this section, two extreme classification cases are considered. First, what
happens if only one or two labeled data points are available? As described
in Section 5.3, the BoP classifier requires at least two nodes for computing the
BoP group betweenness. We performed a small experiment on the first News-
Groups NG1 dataset. The parameters were tuned by a 10-fold cross-validation
and 20 runs were averaged. The classification accuracies are reported in Ta-
ble 5.7. Only the RCT, RWWR, and BoP classifiers remain competitive for this
first extreme case.

Secondly, let us consider the case where the classes are imbalanced. The fol-
lowing experiment was designed to study this other extreme case. The classes
of the well-known industry-yh dataset [87] were merged to get two classes:
the majority class with 1768 nodes and the minority class with only 30 nodes
(this represents 1.67% for the minority class). Once again, the parameters were
tuned by a 10-fold cross-validation and 20 runs were averaged. The classifica-
tion accuracies for the two classes are reported in Table 5.7. The best methods
to identify the minority class are RL and RNL, followed by RWWR and RCT.
In this particular case, the BoP classifier is outperforms by all methods except
HF and RWWR. Therefore, it seems to achieve poor results in the case of highly
unbalanced classes.
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5.5 Conclusion

This chapter investigates an application of the bag-of-paths framework view-
ing the graph as a virtual bag from which paths are drawn according to a
Boltzmann sampling distribution.

In particular, it introduces a novel algorithm for graph-based semi-
supervised classification through the bag-of-paths group betweenness, or BoP
for short (described in Section 5.3). The algorithm sums the a posteriori proba-
bilities of drawing a path visiting a given node of interest according to a biased
sampling distribution, and this sum defines our BoP betweenness measure.
The Gibbs-Boltzmann sampling distribution depends on a parameter, θ, grad-
ually biasing the distribution towards shorter paths: when θ is large, only little
exploration is performed and only the shortest paths are considered, while
when θ is small (close to 0+), longer paths are considered and are sampled
according to the product of the transition probabilities pref

ij along the path (a
natural random walk).

Experiments on real-world datasets show that the BoP method outperforms
the other considered approaches when only a few labeled nodes are available.
When more nodes are labeled, the BoP method is still competitive. Its compu-
tation time is comparable in most of the cases.

The biggest drawback of the BoP classifier is that it is not applicable as-is on
large graphs. A key question is therefore: Is it possible to enhance the classifier
to be computationally more tracktable on large graphs? Investigations have
been carried in that direction but no convincing solution has been found so far.

Another interesting issue is how to combine the information provided by
the graph and the features on the nodes in a clever, preferably optimal, way.
The interest of including node features can be assessed experimentally. This
question is investigated in Chapter 6.
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Chapter 6

Graph-based semi-supervised
classification with additional
information on nodes

Nowadays, with the increasing volume of generated data, for instance by in-
ternet and social networks, there is a need for efficient ways to infer useful
information from those network-based data. Moreover, these data can take
several different forms and, in that case, it would be useful to use these alter-
native views in the prediction model.

In this chapter, we focus our attention on semi-supervised classification (see
Section 3.2) using both regular tabular data defined on nodes and structural
information coming from graphs or networks. We investigate several ways
of combining the structural information provided by a network of interactions
between objects (for instance interactions between members of an online social
network) and information associated to these different objects (for instance
the gender of the person, her age,...) for solving objects (nodes) classification
problems. Another possibility is to use semi-supervised learning based on a
network structure only (discarding the features), as studied in Chapter 5 (see
for instance [2, 58, 90, 122, 149, 165, 218, 222, 266, 268]).

Of course, as discussed in [89] (see, e.g., [151] for a survey), many different
approaches have been developed for information fusion in machine learning,
pattern recognition, and applied statistics. This includes [89] simple weighted
averages (see, e.g., [65, 127]), Bayesian fusion (see, e.g., [65, 127]), majority
vote (see, e.g., [61, 143, 152]), models coming from uncertainty reasoning [148]
(see, e.g., [80]), standard multivariate statistical analysis techniques such as
correspondence analysis [173], maximum entropy modeling (see, e.g., [158,
180, 89]) . . . This is also an emerging field of machine learning called multi-
view learning [223, 261].

This problem has numerous applications such as classification of individ-
uals in social networks, categorization of linked documents (e.g. patents or
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scientific papers), or protein function prediction, to name a few. In this kind of
application (as in many others), unlabeled data are usually available in large
quantities and are easy to collect: friendship links can be recorded on Face-
book, text documents can be crawled from the internet and DNA sequences of
proteins are readily available from gene databases.

In this chapter, we investigate experimentally various models combining
information on the nodes of the graph and the graph structure. Indeed, it has
been shown that network information can improve significantly prediction
accuracy in a number of contexts [121, 165]. A total of 16 classification algo-
rithms using various combinations of data sources, mainly described in [90],
are compared. The different considered algorithms are detailed in Section 6.3.

A standard support vector machine (SVM) classifier is used as a baseline
algorithm, but we also investigated the ridge logistic regression classifier. The
results and conclusions obtained with this second classification model were
similar to the SVM and are therefore not reported in this work.

In short, the main questions investigated in this work are:

I Does the combination of features on nodes and network structure works
better than using the features only?

I Does the combination of features on nodes and network structure works
better than using the graph structure only?

I Which classifier performs best on network structure alone, without con-
sidering features on nodes?

I Which classifier performs best when combining information, that is, us-
ing network structure with features on nodes?

Finally, this comparison leads to some general conclusions and advices when
tackling classification problems on network data with node features.

In summary, this chapter (and the related paper, see Chapter 1) has four
main contributions:

I The chapter reviews different algorithms used for learning from both a
graph structure and node features, mainly following [90]. All considered
algorithms are transductive, except the SVM baseline.

I An empirical comparison of those algorithms is performed on ten real-
world datasets.

I We investigate the effect of extracting features from the graph structure
(and some well-known indicators in spatial statistics) in a classification
context.
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I Finally, this comparison leads to some general conclusions and advices
to tackle graph-based classification tasks.

The remaining of this chapter is organized as follows. Section 6.1 provides
some background and notation. Section 6.2 investigates related work. Sec-
tion 6.3 introduces the investigated classification methods. Then, Section 6.4
presents the experimental methodology and the results. Finally, Section 6.5
concludes the chapter.

6.1 Background and notation

This section aims to recall the theoretical background and notation used in this
chapter. Most of them has already been presented in Chapter 2.

In this chapter, we consider a weighted, undirected, strongly connected,
graph or network G (with no self-loop) containing a set V of n vertices. Let us
just recall the n×n adjacency matrix A of the graph (containing non-negative
affinities between nodes), the Laplacian matrix L = D −A and the random
walk transition probabilities matrix P with elements pij = aij/

∑n
j′=1 aij′

(see Equation (2.8)): the random walker chooses to follow an edge with a
likelihood proportional to the affinity, therefore favoring edges with a large
affinity).

Moreover, we consider that each of the nodes of G has the same set of m
features, or attributes, with no missing values. The column vector xi contains
the values of the m features of node i and xij states for the value of feature
j taken by node i. Moreover, Xfeatures, or simply X, refer to the n × m data
matrix containing the elements xij .

As a last notation we define y, the column vector containing the class labels
of the nodes. More precisely, yc is a binary vector indicating whether or not
each node belongs to class number c. That is, yci is equal to one if node i
belongs to class c, and zero otherwise.

Recall that the purpose of the classification task is to predict the class of
the unlabeled data (in a transductive setting), or to predict new test data (in
an inductive setting), while knowing the structure of the graph G, the values
of the features X for all the nodes of G and the class labels yc on the labeled
nodes only for each c. As already mentioned, our baseline classifier based on
features is a linear support vector machines (SVM).

As stated in Section 3.3, semi-supervised classification comes in two differ-
ent settings: inductive and transductive [268]. The goal of the former setting is
to predict the labels of future test data, unknown when fitting the model, while
the second is to classify (only) the unlabeled instances of the training sample.
All classifiers in this chapter are transductive, except the SVM baseline.
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x4=[x41, x42, ...]
T ,y4

x5=[x51, x52, ...]
T ,y5

x1=[x11, x12, ...]
T ,y1

x2=[x21, x22, ...]
T ,y2

x3=[x31, x32, ...]
T ,y3

F I G U R E 6 . 1 : Example of graph with additional node infor-
mation. Each node is characterized by a feature vector and a

class label.

Finally, the structure of the data should also have been of a different type.
We focus on a particular data structure: we assume that our dataset takes
the form of a network with features associated to the nodes. Nodes are the
samples of our dataset and edges between these nodes represent a given type
of interaction or relation between these samples (like a friendship relation on
Facebook). For each node, a number of features or attributes characterizing it
is also available (see Figure 6.1 for an example). Other data structures exist but
are not studied in this thesis; for instance:

I Different types of nodes can be present, with different types of features
sets describing them.

I Different types of relations can link the different nodes.

6.2 Related work

The 16 investigated models are presented in the next Section 6.3. In addition
to those models, other approaches exist.

For example [28, 118] use a standard ridge regression model complemented
by a Laplacian regularization term, which has been called the Laplacian regu-
larized least squares. This option was investigated but provided poor results
compared to reported models (therefore not reported).
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Note that using a logistic ridge regression as the base classifier (instead of a
support vector machine) was also investigated in this work but results are not
reported here for conciseness as it provided performances similar to the SVM.

Laplacian support vector machines (LapSVMs) extend the SVM classifier
in order to take the structure of the network into account. They exploit both
the information on the nodes and the graph structure in order to categorize the
nodes with the use of its Laplacian matrix (see Section 6.1). To this end, [28]
proposed to add a graph Laplacian regularization term to the traditional SVM
cost function in order to obtain a semi-supervised version of this model. A
Matlab toolbox for this model is available but provided poor results in terms
of performance and tractability. This model was therefore not included in our
comparisons.

Chakrabarti et al. [56] developed, in the context of patents classification, a
naive Bayes model in the presence of structural autocorrelation. The main idea
is to use a naive Bayes classifier combining both feature information on the
nodes and structural information by making some independence assumptions.
However, we found that this procedure is very time consuming, even for small-
size networks, and decided to not include it in the present work as results were
impossible to obtain on the larger datasets.

Also note that various semi-supervised classifiers based on network data
only (features on nodes are not available) were also developed [165, 266]. The
interested reader is invited to consult, e.g., [156, 2, 58, 122, 218, 222, 266, 268]
(and included references), focused on this topic, for comprehensive reviews. Fi-
nally, an interesting survey and a comparative experiment of related methods,
but more focused on relational learning, can be found in [165].

Finally, our problem is a particular case of the more general multi-view
learning framework: Multi-view learning is an emerging direction in machine
learning which considers learning with multiple views to improve the gener-
alization performance [223, 261]. Also known as data fusion, it learns from
multiple feature sets. In our particular case, we study the problem of learning
from two information sources: on the one hand features and on the other hand
a single graph.

Multi-view learning methods are divided into three major categories :
co-training style algorithms, co-regularization style algorithms and margin-
consistency style algorithms [223, 261]. Some of these multi-view algorithms
are investigated.

I Co-training is historically the first family of multi-view algorithms: the
classifier is trained alternately on two distinct views with confident labels
for the unlabeled data (see [41] for details). Examples are co-EM, co-
testing, and robust co-training [261].
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I Co-regularization algorithms make sure that data from multiple views
are consistent by adding a regularization term in the classifier objective
function: the disagreement between the discriminant functions of the
two views. Examples are sparse multi-view SVMs, multi-view TSVMs,
multi-view Laplacian SVMs, and multi-view Laplacian TSVMs [261].

I Margin-consistency style algorithms ensure the latent consistency of clas-
sification results from multiple views by using the framework of maxi-
mize entropy discrimination (MED, see [223, 261] for details).

6.3 Description of relevant classification methods

The different classification methods compared in this work are briefly pre-
sented in this section, which is largely inspired by [90]. For a more thorough
presentation, see the provided references to the original works or [90]. The clas-
sification models are sorted into different families: graph embedding-based
classifiers, extensions of feature-based classifiers, graph-based classifiers, and
multi-view learning.

All these methods rely on a standard, strong, assumption about the distribu-
tion of the labels in the graph: it is assumed that neighboring nodes are likely
to belong to the same class and thus are likely to share the same class label
(see, e.g., [149, 90, 218]). This assumption, called homophily, associativity, lo-
cal consistency, or structural autocorrelation is discussed in Section 3.2. This
hypothesis can be tested by using some autocorrelation measures widely used
in spatial statistics (see Section 6.4.4). Moreover, the experiments show that if
the assumption is not verified, the methods exploiting the graph structure do
not bring any useful information to classify the nodes.

6.3.1 Graph embedding-based classifiers

A first interesting way to combine information from the features on the nodes
and from the graph structure is to perform a graph embedding projecting
the nodes of the graph into a low-dimensional space (an embedding space)
preserving as much as possible its structural information, and then use the
coordinates of the projected nodes as additional features in a standard classi-
fication model, such as a logistic regression or a support vector machine.

This procedure has been proposed, e.g., in the field of spatial statistics for
ecological modeling [45, 79, 172], but also more recently in data mining [228,
229, 230, 260]. While many graph embedding techniques could be used, [79]
suggests to exploit Moran’s or Geary’s index of spatial autocorrelation in order
to compute the embedding.
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Let us briefly develop their approach by closely following [90] (see this
reference for more information). Moran’s I and Geary’s c (see, e.g., [113, 192,
246, 247]) are two coefficients commonly used in spatial statistics in order to
test the hypothesis of spatial autocorrelation of a numerical quantity defined
on the nodes. This interesting property is investigated on the datasets used in
the experimental section, in the context of semisupervised classification (see,
e.g., Table 6.8). Four different possibilities are considered to extract features
from the graph structure: maximizing Moran’s I , minimizing Geary’s c, local
principal component analysis and maximizing the bag-of-paths (BoP) modular-
ity. Experimentally, we observed that some datasets are more “graph-driven”:
the network structure conveys important information for predicting the class
labels. As we will see later, the four values of this section can also be used to
assert this (see Table 6.8).

Maximizing Moran’s index

Moran’s I [176, 177] is given by

I(x) =
n

a••

∑n
i,j=1 aij(xi − x̄)(xj − x̄)∑n

i′=1(xi′ − x̄)2
(6.1)

where xi and xj are the values observed on nodes i and j respectively, for a
considered quantity defined on the nodes (for instance the age of the person
in a social network). The column vector x is the vector containing the values
xi on the nodes and x̄ is the average value of x. Then, a•• is simply the sum of
all entries of A – the volume of the graph.

I(x) can be interpreted as a correlation coefficient similar to the Pearson
correlation coefficient [113, 192, 246, 247]. The numerator is a measure of co-
variance among the neighboring xi in G, while the denominator is a measure
of variance. It is a common misconception that I is in the interval [−1,+1].
Instead, the upper and lower bound depends on n, a••, but also on the maxi-
mum and minimum eigenvalues of A (see [134] for details). A value close to
I0 = −1/(n − 1) ≈ 0 [134] indicates no evidence of autocorrelation, a larger
value indicates positive autocorrelation and a smaller value indicates negative
autocorrelation (autocorrelation means that neighboring nodes tend to take
similar values).

In matrix form, Equation (6.1) can be rewritten as

I(x) =
n

a••

xTHAHx

xTHx
(6.2)

where H = (I − E/n) is the centering matrix [169] and E is a matrix full of
ones. Note that the centering matrix is idempotent, HH = H.
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The objective is now to find the scores x that achieve the largest autocorre-
lation, as defined by Moran’s index. This corresponds to the values that most
explain the structure of G. It can be obtained by setting the gradient equal to
zero; we then obtain the following generalized eigensystem:

HAHx′ = λx′, and then x = Hx′ (6.3)

The idea is thus to extract the first eigenvector x1 of the centered adjacency
matrix (6.3) corresponding to the largest eigenvalue λ1 and then to compute
the second-largest eigenvector, x2, orthogonal to x1, . . . The eigenvalues λi are
proportional to the corresponding explained Moran’s I(x).

The p largest centered eigenvectors of (6.3) are thus extracted and then used
as additional p features for a supervised classification model (here a SVM). In
other words, XMoran = [x1,x2, . . . ,xp]

T is a new data matrix, capturing the
structural information of G, that can be concatenated to the feature-based data
matrix Xfeatures, forming the extended data matrix [Xfeatures,XMoran].

Minimizing Geary’s constant

On the other hand, Geary’s c [103] is another estimate of autocorrelation given
by

c(x) =
(n− 1)

2 a••

∑n
i,j=1 aij(xi − xj)2∑n
i′=1(xi′ − x̄)2

(6.4)

and is related to Moran’s I . However, while Moran’s I considers a covariance
between neighboring nodes, Geary’s c considers distances between values on
pairs of neighboring nodes. Once again, lower and upper bounds are often
assumed to be respectively 0 and 2 with 0 indicating perfect positive auto-
correlation and 2 indicating perfect negative autocorrelation [172, 192, 247].
However, as for Moran’s I, [134] shows that the bounds are more complex and
actually depend on n, a••, and the maximum and minimum eigenvalues of A.
c = 1 indicates no evidence of autocorrelation.

In matrix form, Geary’s c can be rewritten as

c(x) =
(n− 1)

2a••

xTLx

xTHx
. (6.5)

This time, the objective is to find the score vector minimizing Geary’s c. By
proceeding as for Moran’s I , we find that minimizing c(x) aims to compute
the p lowest non-trivial eigenvectors of the Laplacian matrix:

Lx = λHx (6.6)
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and then use these eigenvectors as additional p features in a classification
model. We therefore end up with the problem of computing the lowest eigen-
vectors of the Laplacian matrix, which also appears in spectral clustering (ratio
cut, see, e.g., [243, 90, 183]).

Geary’s c has a computational advantage over Moran’s I : the Laplacian
matrix is usually sparse, which is not the case for Moran’s I . Moreover, note
that since the Laplacian matrix L is centered, any non-trivial solution of Lx =
λx is also a solution of Equation (6.6).

Local principal component analysis

In [29, 154], the authors propose to use a measure of local, structural, associa-
tion between nodes, the contiguity ratio defined as

cr(x) =

∑n
i=1(xi −mi)

2∑n
i′=1(xi′ − x̄)2

, with mi =
∑

j∈N (i)

pijxj (6.7)

and mi is the average value observed on the neighbors of i, N (i). As for
Geary’s index, the value is close to zero when there is a strong structural asso-
ciation. However, there are no clear bounds indicating no structural association
or negative correlation [154].

The numerator of Equation (6.7) is the mean squared difference between
the value on a node and the average of its neighboring values; it is called the
local variance in [154]. The denominator is the standard sample variance. In
matrix form,

=
xT(I−P)T(I−P)x

xTHx
(6.8)

Proceeding as for Geary and Moran’s indexes, minimizing cr(x) aims to
solve

(I−P)T(I−P)x = λHx (6.9)

Here again, eigenvectors corresponding to the smallest non-trivial eigenvalues
of the eigensystem (6.9) are extracted. This procedure is also referred to as
local principal component analysis in [154].

Bag-of-paths modularity

For this algorithm, we also compute a number of structural features, but now
derived from the modularity measure (which was introduced by Newman
and co-workers in [184, 182, 183]) redefined in the bag-of-paths (BoP) frame-
work [75], and concatenate them to the node features, [Xfeatures,XBoPMod].
Again, a SVM is then used to classify all unlabeled nodes. Indeed, it has
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been shown that using the dominant eigenvectors of the BoP modularity ma-
trix provides better performances than using the eigenvectors of the standard
modularity matrix [75]. The results for the standard modularity matrix are
therefore not reported in this work.

It can be shown (see [75] for details) that the BoP modularity matrix is equal
to

QBoP = Z− (Ze)(eTZ)

eTZe
(6.10)

where Z is the fundamental bag-of-paths n× n matrix and e is a length n col-
umn vector full of ones. Then as for Moran’s I and Geary’s c, an eigensystem

QBoPx = λx (6.11)

must be solved and the largest eigenvectors are used as new, additional, struc-
tural, features.

6.3.2 Extensions of standard feature-based classifiers

These techniques rely on extensions of standard feature-based classifiers (for
instance a logistic regression model or a support vector machine). The exten-
sion is defined in order to take the network structure into account. As before,
the discussion is based on [90].

The AutoSVM: taking autocovariates into account

This model is also known as the autologistic or autologit model [36, 179, 16,
163], and is frequently used in the spatial statistics and biostatistics fields.

Note that, as a SVM is used as base classifier in this work, we adapted
this model (instead of the logistic regression in [16]) in order to take the graph
structure into account.

The method is based on the quantity acci =
∑
j∈N (i) pij ŷ

c
j , where ŷcj is

the predicted membership of node j, called the autocovariate in [16] (other
forms are possible, see [179, 16]). It corresponds to the weighted averaged
membership to class c within the neighborhood of i: it indicates to what extent
neighbors of i belong to class c. The assumption is that node i has a higher
chance to belong to class c if its neighbors also belong to that class.

However, since the predicted value ŷcj depends on the occurrence of the
predicted value on other nodes, fitting the model is not straightforward. For
the autologistic model, it goes through the maximization of the (pseudo-) likeli-
hood (see for example [189, 36]), but we will consider a simpler alternative [16]
which uses a kind of expectation-maximization-like heuristics (EM, see, e.g. [73,
171]), and is easy to adapt to our SVM classifier.
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Following [90], here is a summary of the estimation procedure proposed
in [16]:

1. At t = 0, initialize the predicted class memberships ŷci (t = 0) of the
unlabeled nodes by a standard SVM depending on the feature vectors
only, from which we disregard the structural information (the informa-
tion about neighbors’ labels). For the labeled nodes, the membership
values are of course not modified.

2. Compute the current values of the autocovariates, acci =
∑
j∈N (i) pij ŷ

c
j(t),

for all nodes.

3. Train a so-called autoSVM model based on these current autocovariate
values as well as the features on nodes, providing parameter estimates
ŵc.

4. Compute the new predicted class memberships ŷci (t+ 1) of the set of un-
labeled nodes from the fitted autoSVM model. After having considered
all the unlabeled nodes, we have the new predicted values ŷci (t+ 1).

5. Steps 2 to 4 are iterated until convergence of the predicted membership
values ŷci (t).

Double kernel SVM

Here, we describe another simple way of combining the information coming
from features on nodes and graph structure. The basic idea ([206, 90]) is to

1. Compute a n × n kernel matrix based on node features [211, 217], for
instance a linear kernel or a gaussian kernel.

2. Compute a n×n kernel matrix on the graph [91, 90, 102, 217], for instance
the regularized commute-time kernel (see Section 6.4.2).

3. Fit a SVM based on these two combined kernels.

Then, by using the kernel trick, everything happens as if the new data matrix
is

Xnew = [KA,KX] (6.12)

where KA is a kernel on a graph and KX = XXT is the kernel matrix associ-
ated to the features on the nodes (see [90] for details). Then, we can fit a SVM
classifier based on this new data matrix and the labeled nodes.
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A spatial autoregressive model

This model is a spatial extension of a standard regression model [157] and is
well known in spatial econometrics. This extended model assumes that the
predicted vector of class memberships ŷc is generated in each class c according
to

ŷc = ρPŷc + Xwc + ε (6.13)

where wc is the usual parameter vector, ρ is a scalar parameter introduced
to account for the structural dependency through P and ε is an error term.
This model is somehow related to the previously introduced AutoSVM model.
Obviously if ρ is equal to zero, there is no structural dependency and the model
reduces to a standard linear regression model. Lesage’s Econometrics Matlab
toolbox was used for the implementation of this model [157]; see this reference
for more information.

6.3.3 Graph-based classifiers

We also investigate some semi-supervised methods based on the graph struc-
ture only (no node feature exists or features are simply not taken into account).
We selected the techniques performing best in a series of previous experimen-
tal comparisons [91, 156, 168]. As already discussed, they rely on some strong
assumptions about the distribution of labels: that neighboring nodes are likely
to share the same class label [58].

The bag-of-paths group betweenness classifier

This model (see Chapter 5 and [156]), inspired by [94, 208], considers a bag
containing all the possible paths between pairs of nodes in G. Then, a Boltz-
mann distribution, depending on a temperature parameter T , is defined on the
set of paths such that long (high-cost) paths have a low probability of being
drawn from the bag, while short (low-cost) paths have a high probability of
being drawn. This model is described in Section 5.3.

A sum-of-similarities based on the regularized commute time kernel

We also investigate a classification procedure based on a simple alignment
with the regularized commute time kernel (RCT) KRCT, a sum-of-similarities
(or kernel alignment) defined by KRCT yc, with KRCT = (D−αA)−1 [265, 91,
90]. This expression quantifies to what extent each node is close (in terms of the
similarity provided by the regularized commute time kernel) to class c. This
similarity is computed for each class c in turn. Then, each node is assigned to
the class showing the largest sum of similarities. It corresponds to a variant of

72



Chapter 6. Graph-based semi-sup. classification with nodes information

the k nearest neighbors classifier when dealing with a similarity matrix instead
of distances.

Element i, j of this kernel can be interpreted as the discounted cumulated
probability of visiting node j when starting from node i. The (scalar) parameter
α ∈ [0, 1] corresponds to a killed random walk where the random walker
has a (1 − α) probability of disappearing at each step. Other graph kernels
could be used in a sum-of-similarities setting [90] but this one consistently
provided good results in comparative studies of graph-based semi-supervised
classification techniques [91, 168, 94].

6.3.4 Multi-view learning

Finally, Multi-view learning is also considered. The three classes of Multi-view
learning were recalled in Section 6.2. The original co-training algorithms [41]
was re-implemented based on SVMs.

Co-training

Given a set L of labeled samples/nodes and a set U of unlabeled sam-
ples/nodes, the algorithm iterates the following two-steps procedure. First,
use L to train two distinct classifiers: here one is based on the features only
and the second is based on a kernel extracted from the graph only. Second,
allow each of the classifier to label a small subset of U with the highest pos-
teriors provided by both views (the most “certain” nodes; here, distances to
the hyperplane were used instead), then update L and U . When all unlabeled
nodes have been labeled, the procedure stops. See [41] for more details.

Kernel canonical correlation analysis

Kernel canonical correlation analysis [116] is an kernel extension of standard
canonical correlation analysis. The idea is to project the data in a new space,
and constrain the multiple transformed feature sets to be as close as possible,
while regularizing the self covariance of each transformed feature sets to be
small enough. The goal is to find projection vectors w1 and w2 such that

cov(Xw1,Yw2)√
var(Xw1)var(Yw2)

(6.14)

is maximal. var() and cov() are respectively the variance and covariance mea-
sures and X and Y are two kernel-based views. In our case, X corresponds to
the regular features and Y corresponds to a kernel built from the graph (here,
we chose the RCT kernel with α = 0.85). See [261] or [116] for more details.
Notice that this method is related to the double kernel SVM of Section 6.3.2.
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TA B L E 6 . 1 : Class distribution of the four WebKB datasets.

Cornell Texas Washington Wisconsin
Class (DB1) (DB2) (DB3) (DB4)

Course 42 33 59 70
Faculty 32 30 25 32
Student 83 101 103 118
Project + staff 38 19 28 31

Total 195 183 230 251
Majority class (%) 42.6 55.2 44.8 47.0

Number of features 1704 1704 1704 1704

TA B L E 6 . 2 : Class distribution of the three Ego facebook
datasets.

FB 107 FB 1684 FB 1912
Class (DB5) (DB6) (DB7)

Main group 524 568 737
Other groups 232 225 308

Total 756 793 1045
Majority class (%) 69.3 71.2 70.5

Number of features 480 319 576

6.4 Experiments

In this section, the different classification methods will be compared on semi-
supervised classification tasks and several datasets. The goal is to classify
unlabeled nodes and to compare the results obtained by the different methods
in terms of classification accuracy.

This section is organized as follows. First, the datasets used for semi-
supervised classification are described in Section 6.4.1. Then, the compared
methods are recalled in Section 6.4.2. The experimental methodology is ex-
plained in Section 6.4.3. Finally, results are presented and discussed in Sec-
tion 6.4.4.

6.4.1 Datasets

All datasets are described by (i) an adjacency matrix A of the underlying graph,
(ii) class vectors yc (to predict), and (iii) a number of features on nodes gathered
in the data matrix Xfeatures. A chi-square test was used to keep only the 100
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TA B L E 6 . 3 : Class distribution of the Citeseer, Cora and
Wikipedia datasets.

Citeseer Cora Wikipedia
Class (DB8) (DB9) (DB10)

Class 1 269 285 248
Class 2 455 406 509
Class 3 300 726 194
Class 4 75 379 99
Class 5 78 214 152
Class 6 188 131 409
Class 7 344 181
Class 8 128
Class 9 364
Class 10 351
Class 11 194
Class 12 81
Class 13 233
Class 14 111

Total 1392 2708 3271
Majority class (%) 32.7 26.8 15.6

Number of features 3703 1434 4973

most significant features for each dataset. The datasets are available at http:
//www.isys.ucl.ac.be/staff/lebichot/research.htm and https:
//b-lebichot.github.io/.

For each of these dataset, if more than one connected component is present,
we only use the largest connected component, deleting all the others nodes,
features and target classes. The reason is that some of the considered classifiers
require a connected graph to work. Also, we choose to work with undirected
graphs for all datasets: if a graph is directed, we used A = (AT + A)/2 to
introduce reciprocal edges.

I The four WebKB datasets (DB1-DB4) [196] consist of web pages gath-
ered from computer science departments from four universities (there are
four datasets, one for each university), with each page manually labeled
into one of four categories: course, faculty, student and project [165]. The
pages are linked by citations (if x links to y then it means that y is cited by
x, not to be confused with the four co-citation datasets). Each web page
in the dataset is also characterized by a binary word vector indicating the
absence/presence of the corresponding word from the dictionary. The
dictionary consists of 1703 unique words (words appearing less than 10
times were ignored). Originally, a fifth category, Staff, was present but
since it contained only very few instances, it was merged with the Project
class. Details on these datasets are shown in Table 6.1.
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I The three Ego Facebook datasets (DB5-DB7) [170] consist of “circles"
(or friends communities) from Facebook. Facebook data were collected
from survey participants using a Facebook application. The original
dataset includes node features (profiles), circles, and ego networks for 10
networks. Those data are anonymized and the exact signification of the
circles is unknown [170]. We use only the three first networks and the
classification task is to predict the affiliation to a circle. Details on these
datasets are shown in Table 6.2. Each dataset has two classes.

I The CiteSeer dataset (DB8) [196] consists of 3312 scientific publications
classified into six classes. The pages are linked by citation. Each publi-
cation in the dataset is described by a binary word vector indicating the
absence/presence of the corresponding word from the dictionary. The
dictionary consists of 3703 unique words (words appearing less than 10
times were ignored). The target variable contains the topic of the publi-
cations (six topics). Details on this dataset are shown in Table 6.3.

I The Cora dataset (DB9) [196] consists of 2708 scientific publications clas-
sified into one of seven classes denoting topics as for previous dataset.
Pages are linked by citations. Each publication is also described by a bi-
nary word vector indicating the absence/presence of the corresponding
word from the dictionary. The dictionary consists of 1434 unique words
or features (words appearing less than 10 times were ignored). The target
variable represents the topic of the publications. Details on this dataset
are shown in Table 6.3.

I The Wikipedia dataset (DB10) [196] consists of 3271 Wikipedia articles
that appeared in the featured list in the period Oct. 7-21, 2009. Each docu-
ment belongs to one of 14 distinct broad categories, which were obtained
by using the category under which each article is listed. After stemming
and stop-word removal, the content of each document is represented by a
tf/idf-weighted feature vector, for a total of 4973 words. Pages are linked
by citation. The target variable represents the articles field (14 different
topics). Details on this dataset are shown in Table 6.3.

Moreover, in order to study the impact of the relative information provided
by the graph structure and the features on nodes, we created new derived
datasets by weakening gradually the information provided by the node fea-
tures. More precisely, for each dataset, the features available on the nodes
have been ranked by decreasing association (using a chi-square statistics) with
the target classes to be predicted. Then, datasets with subsets of the features
containing respectively the 5 (5F), 10 (10F), 25 (25F), 50 (50F), and 100 (100F)
most informative features were created (5 sets of features). These datasets are
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weakened versions of the original datasets, allowing to investigate the respec-
tive impact of features on nodes and graph structure. We also investigated sets
with more features (200 and 400), but conclusions were the same, so that they
are not reported here for conciseness.

6.4.2 Compared classification models

In this work, a transductive scheme is used, as we need to know the whole
graph structure to label unlabeled nodes. The 16 different algorithms described
before will be compared and can be sorted in three categories, according to the
information they use. Some algorithms use only features to build the model
(denoted as X – data matrix with features only), others use only the graph
structure (denoted as A – adjacency matrix of the graph only), and the third
category uses both the structure of the graph and the features of the nodes
(denoted as AX – combined information).

Using features on nodes only

This reduces to a standard classification problem and we use a linear Support
Vector Machine (SVM) based on the features of the nodes to label these nodes
(SVM-X). Here, we consider SVMs in the binary classification setting (i.e.
yi ∈ {−1,+1}). For multiclass problems, we used a one-vs-rest strategy [125].
This classifier is considered as a baseline. In practical terms, we use the well-
known Liblinear library [85]. Notice that SVM follows an inductive scheme,
unlike all other methods. Transductive SVMs [100] were also considered, but
their available Matlab implementation was too slow to be included in the
present analysis.

Using graph structure only

Three different families of methods using graph structure only are investigated.
For the bag-of-paths classifier based on the bag-of-paths group between-

ness (BoP-A), the betweenness is computed for each class in turn. Then, each
unlabeled node is assigned to the class showing the largest value (see Sec-
tion 6.3.3 for more details).

Then, for the sum-of-similarities method based on the regularized com-
mute time kernel (CTK-A), the classification procedure is the same as BoP-A:
the class similarity is computed for each class in turn and each unlabeled node
is assigned to the class showing the largest similarity (see Section 6.3.3).

The four graph embedding techniques discussed in Section 6.3.1, used
together with a SVM without considering any node feature, are also considered.
The SVM is trained using a given number of extracted dominant eigenvectors

77



Chapter 6. Graph-based semi-sup. classification with nodes information

derived from each measure (this number is a parameter to tune). The SVM
model is then used to classify the unlabeled nodes. SVMs using Moran’s I ,
Geary’s c, local principal component analysis and the bag-of-paths modularity
(see Section 6.3.1) are denoted as SVM-M-A, SVM-G-A, SVM-L-A, and SVM-
BoPM-A, respectively.

Using both information (features on nodes and graph structure)

Here, we investigate the following models.
In the double kernel SVM (DK-SVM-AX), two kernels are computed, one

defined on the graph and the second from the node features Xnew = [KA,KX]
(see Section 6.3.2). A SVM is then used to classify the unlabeled nodes.

Similarly, the support vector machine using autocovariates (ASVM-AX),
autocovariates are added to the node features Xnew = [Xfeatures,Ac] (see Sec-
tion 6.3.2).

On the other hand, the spatial autoregressive model (SAR-AX) is a spatial
extension of the standard regression model (see Section 6.3.2), used to classify
the unlabeled nodes.

Moreover, the dominant eigenvectors (this number is a parameter to tune)
provided by the four graph embedding techniques (Section 6.3.1) are com-
bined with the node features and then injected into a linear SVM classifier. The
new set of feature is therefore Xnew = [Xfeatures,Xembedding], where Xembedding

can be obtained using Moran’s I , Geary’s c, local principal component analysis
and the bag-of-paths modularity (see Section 6.3.1). Those four variants are
named SVM-M-AX, SVM-G-AX, SVM-L-AX, and SVM-BoPM-AX, respec-
tively.

Furthermore, co-training based on two SVMs (SVM-COT-AX) uses two
SVM classifiers, one based on a kernel computed from the features X and
the second based on a graph kernel computed from A (see Section 6.3.4). A
two-steps procedure is then used to classify the unlabeled nodes.

Finally, the SVM based on kernel canonical correlation analysis (SVM-
KCA-AX) first aligns two kernels, one based on X and one based on A. Then
the two aligned kernels are used together as for DK-SVM-AX.

The considered classifiers, together with their parameters to be tuned, are
listed in Table 6.4.

6.4.3 Experimental methodology

The classification accuracy will be reported for a 20% labeling rate, i.e. pro-
portion of nodes for which labels are known. Labels of remaining nodes are
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TA B L E 6 . 4 : The 16 classifiers, the value range tested for tun-
ing their parameters and the most frequently selected values:
Mode is the most selected value across all datasets. Note that
p, the number of extracted eigenvector, is given in %: this is
the relative number of kept features with respect to the num-

ber of node of the graph (different for each dataset).

Classification model Use A Use X Acronym Param. Tested values Mode
Bag-of-paths betweenness (6.3.3) yes no BoP-A θ > 0 10[−9,−6,−3,0] 10−6(40.2%)
Sum of similarities with the RCT kernel (6.3.3) yes no CTK-A λ > 0 0.2, 0.4, 0.6, 0.8, 1 0.8(39.4%)

SVM on Moran’s extracted features only (6.3.1) yes no SVM-M-A C > 0 10[−6,−4,−2,0,2,4,6] 10−2(63.0%)
p > 0 [5, 10, 20, 35, 50%] 5%(74.0%)

SVM on Geary’s extracted features only (6.3.1) yes no SVM-G-A C > 0 10[−6,−4,−2,0,2,4,6] 10−2(34.8%)
p > 0 [5, 10, 20, 35, 50%] 5%(39.6%)

SVM on LPCA’s extracted features only (6.3.1) yes no SVM-L-A C > 0 10[−6,−4,−2,0,2,4,6] 102(47.3%)
p > 0 [5, 10, 20, 35, 50%] 5%(69.5%)

SVM on BoP modularity extracted features (6.3.1) yes no SVM-BoPM-A θ > 0 10[−9,−6,−3,0] 100(35.2%)

C > 0 10[−6,−3,0,3,6] 103(44.4%)
p > 0 [5, 10, 20, 35, 50%] 5%(72.0%)

SVM on node features only (baseline) no yes SVM-X C > 0 10[−6,−4,−2,0,2,4,6] 10−2(27.2%)

Spatial autoregressive model (6.3.2) yes yes SAR-AX none − -
SVM on Moran and nodes features (6.3.1) yes yes SVM-M-AX C > 0 10[−6,−4,−2,0,2,4,6] 102(26.9%)

p > 0 [5, 10, 20, 35, 50%] 5%(33.3%)

SVM on Geary and nodes features (6.3.1) yes yes SVM-G-AX C > 0 10[−6,−4,−2,0,2,4,6] 102(21.2%)
p > 0 [5, 10, 20, 35, 50%] 5%(31.8%)

SVM on LPCA and nodes features (6.3.1) yes yes SVM-L-AX C > 0 10[−6,−4,−2,0,2,4,6] 102(28.4%)
p > 0 [5, 10, 20, 35, 50%] 5%(41.8%)

SVM on BoP modularity and nodes features (6.3.1) yes yes SVM-BoPM-AX θ > 0 10[−9,−6,−3,0] 100(27.4%)

C > 0 10[−6,−3,0,3,6] 103(41.0%)
p > 0 [5, 10, 20, 35, 50%] 5%(48.9%)

SVM on autocovatiates and nodes features (6.3.2) yes yes ASVM-AX C > 0 10[−6,−4,−2,0,2,4,6] 100(28.1%)

SVM on a double kernel (6.3.2) yes yes SVM-DK-AX C > 0 10[−6,−4,−2,0,2,4,6] 10−4(31.7%)

Co-training based on two SVMs (6.3.4) yes yes SVM-COT-AX C > 0 10[−6,−3,0,3,6] 10−6(34.8%)

SVM based on kernel canonical correlation (6.3.4) yes yes SVM-KCA-AX C > 0 10[−6,−3,0,3,6] 10−6(44.2%)

deleted during model fitting phase and are used as test data during the assess-
ment phase, where the various classification models predict the most suitable
category of each unlabeled node in the test set.

A standard 5-fold nested cross-validation is used for assessing the investi-
gated methods. For each dataset and for each considered feature set, samples
(nodes) are randomly assigned into 5 external folds, which defines one run
of the experimental comparison. Moreover, for each external fold, a 5-fold
internal, nested, cross-validation is performed to tune the parameters of the
models (see Table 6.4). The results for one specific run are then computed by
taking the average over the 5 external folds. The whole procedure is repeated
5 times to mitigate the effect of lucky/unlucky samples-to-fold assignation, so
that 5 runs of the experimental comparison for each dataset and feature set are
performed, with different fold assignments.

6.4.4 Results and discussion

First of all, most frequently selected parameter values are reported on Table 6.4.
We observe that the most selected value for p (the number of eigenvectors
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TA B L E 6 . 5 : Time analysis of the 16 classifiers. Time 251 is
the time in seconds required to label DB4, with two classes
and 251 nodes (Student vs other, cfr Table 6.1). Time 756 is the
time in seconds required to label DB5, with two classes and
756 nodes. Ratio is computed as Time 756 divided by Time
251 (from DB4 to DB5, the number of node is multiplied by
3.012). Computation times are averaged on 10 runs. Param
is a reminder about the parameters to be tuned. The fastest

methods are indicated in bold.

Acronym Param Implementation Time 251 Time 756 Ratio
BoP-A θ Matlab (not sparse) 0.69s 25.99s 37.47
CTK-A α Matlab (sparse) 0.15s 0.59s 4.06
SVM-M-A C,p Matlab with MEX(C) 2.03s 28.44s 14.01
SVM-G-A C,p Matlab with MEX(C) 0.44s 4.66s 10.57
SVM-L-A C,p Matlab with MEX(C) 0.53s 6.13s 11.55
SVM-BoPM-A θ,C,p Matlab with MEX(C) 2.16s 58.46s 27.03
SVM-X none Matlab with MEX(C) 0.10s 0.22s 2.08
SAR-AX none Lesage’s Matlab toolbox 2.96s 43.80s 14.79
SVM-M-AX C,p Matlab with MEX(C) 2.00s 29.76s 14.89
SVM-G-AX C,p Matlab with MEX(C) 0.47s 5.19s 11.00
SVM-L-AX C,p Matlab with MEX(C) 0.53s 6.88s 13.00
SVM-BoPM-AX θ,C,p Matlab with MEX(C) 2.18s 60.41s 27.73
ASVM-AX C Matlab with MEX(C) 1.50s 7.78s 5.18
SVM-DK-AX C Matlab with MEX(C) 1.26s 17.00s 13.48
SVM-COT-AX C Matlab with MEX(C) 2.43s 34.92s 14.34
SVM-KCA-AX C Matlab 4.37s 82.76s 18.95

extracted for representing the graph structure; see Section 6.3.1) is actually low.
This is good news since efficient eigensystem solvers can be used to compute
sequentially the first eigenvectors corresponding to the largest (or smallest)
eigenvalues.

The classification accuracy and standard deviation, averaged on the 5 runs,
are reported on Tables 6.6 (for the methods based on both features and the
graph structure) and 6.7 (for the methods based on the graph structure only),
for the 10 different datasets and the 5 sets of features. Bold values indicate
the best performance on each row. Recall that the BoP-A, CTK-A, SVM-M-A,
SVM-G-A, and SVM-L-A methods do not depend on the node features as they
are based on the graph structure only.

Moreover, the different classifiers are compared across datasets through
a Friedman test and a Nemenyi post-hoc test [74]. The Friedman/Nemenyi
test is a non-parametric equivalent of the repeated-measures ANOVA (see Ap-
pendix A. The post-hoc Nemenyi test determines whether or not each method
is significantly better than another.

This is reported, for each feature set in turn (5F, 10F, . . . , 100F), and thus
increasing information available on the nodes, in Figures 6.2 to 6.6, while the
result of an overall test based on all the features sets and datasets is shown in
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TA B L E 6 . 6 : Classification accuracy in percent ± standard
deviation, obtained on the 5 runs, the AX combined methods
(as well as the baseline) and the 10 datasets. Results are re-
ported for the five different feature sets (100F stands for the
set of 100 features, and so on). The standard deviation is com-
puted on the 5 folds of the external cross-validation and the
5 independent runs. Best results for each dataset and feature

set are highlighted in bold.

SAR SVM-G SVM-M ASVM SVM-DK SVM-BoPM SVM-L SVM-COT SVM-KCA SVM
AX AX AX AX AX AX AX AX AX X

D
B1

100F 53.2±7.5 84.0±1.4 83.7±1.4 79.4±0.8 84.9±1.1 84.1±1.0 83.7±1.3 66.7±1.5 84.1±0.7 83.7±1.5
50F 66.9±0.9 79.5±1.8 79.5±2.0 79.2±1.9 80.9±1.6 79.0±3.2 79.5±2.0 64.4±2.0 78.3±0.9 80.6±0.7
25F 65.4±3.2 69.8±4.0 68.1±4.4 74.6±1.3 73.6±1.5 73.9±2.0 68.6±4.4 57.5±2.0 69.3±1.6 74.6±1.6
10F 64.4±3.3 63.0±3.8 62.2±4.8 71.4±3.5 69.7±3.2 69.8±2.6 62.7±3.9 56.5±1.5 70.3±3.1 70.9±2.1
5F 62.0±4.2 57.3±5.4 58.1±3.3 65.8±4.1 65.2±1.7 60.4±0.9 57.9±2.6 51.7±3.1 65.0±1.2 65.5±0.8

D
B2

100F 62.9±1.6 81.0±0.6 80.6±0.4 75.1±1.5 79.9±1.4 80.4±1.1 80.4±1.0 60.1±1.2 78.8±1.4 80.8±0.4
50F 66.5±4.2 76.6±1.4 76.4±2.0 74.4±2.2 76.8±0.9 76.6±1.5 76.7±1.4 58.6±2.5 75.9±0.8 76.9±0.8
25F 66.9±3.6 70.6±2.3 71.0±2.3 73.3±1.1 74.2±2.0 73.4±1.9 71.0±2.5 57.1±1.8 73.0±1.2 75.5±1.5
10F 64.8±5.7 58.9±10.6 57.3±8.2 72.3±2.3 72.4±1.3 72.1±2.3 58.6±9.2 56.6±2.3 72.9±1.5 74.3±2.1
5F 55.7±8.6 56.8±8.1 56.4±7.9 70.9±1.5 68.1±2.7 65.7±1.7 57.3±6.8 52.6±1.4 67.6±2.2 66.2±2.0

D
B3

100F 64.2±4.4 80.8±1.3 80.7±1.5 80.1±0.7 81.3±0.7 81.2±0.9 80.8±1.7 59.0±1.0 80.9±0.6 80.9±1.7
50F 65.9±3.2 77.2±0.7 77.3±0.8 77.7±1.6 77.7±2.0 78.3±1.1 77.3±0.7 55.5±2.3 77.7±1.0 78.3±1.3
25F 69.1±2.1 73.6±3.2 73.1±2.9 75.7±0.9 76.9±1.2 78.2±0.7 73.5±3.2 55.1±1.6 76.8±0.8 77.5±1.0
10F 63.6±4.4 64.0±8.0 63.7±6.9 75.7±1.3 74.9±0.7 74.9±0.8 64.6±7.9 53.8±2.2 74.8±2.1 75.6±1.9
5F 60.5±6.4 64.3±8.2 65.3±7.4 69.4±1.9 71.1±0.6 68.5±3.3 64.1±8.5 51.4±0.4 68.9±0.9 71.0±1.6

D
B4

100F 70.5±3.8 83.2±0.7 83.2±0.6 81.1±1.8 84.3±0.9 83.4±0.6 83.2±0.9 59.7±1.7 83.3±1.5 83.1±0.7
50F 72.0±3.8 78.5±1.6 78.5±1.7 79.4±1.0 80.0±2.0 81.6±1.6 78.8±1.3 60.7±1.7 79.5±1.2 81.1±2.3
25F 68.1±3.4 74.3±4.2 74.4±4.1 79.8±1.9 78.6±0.9 79.2±0.6 74.1±4.7 60.7±2.1 78.6±1.1 79.4±1.2
10F 67.7±4.8 64.8±7.7 64.2±7.5 76.2±1.8 72.2±0.8 70.2±1.8 65.7±7.0 57.7±0.9 71.4±1.2 71.7±0.7
5F 61.6±8.8 59.6±7.4 59.4±7.8 75.5±1.7 74.4±1.7 73.7±1.7 58.8±7.7 58.2±1.2 73.8±1.1 75.0±0.6

D
B5

100F 50.7±12.3 87.8±0.8 87.7±0.7 92.1±0.4 88.8±1.0 88.1±0.5 87.9±0.8 91.2±1.2 88.4±0.8 88.5±0.5
50F 66.2±17.2 87.6±2.2 89.9±1.9 92.3±0.3 88.9±0.5 88.9±0.6 88.8±2.1 91.5±1.2 88.8±0.3 89.1±0.7
25F 80.3±16.6 90.4±1.4 93.7±1.6 95.3±0.2 89.1±1.4 91.1±0.9 90.8±1.5 92.1±0.7 89.6±0.6 89.5±0.5
10F 76.1±9.8 93.1±1.2 94.9±0.7 95.5±0.4 89.4±1.2 92.9±0.9 93.7±1.3 91.9±0.7 89.4±1.3 89.5±0.5
5F 74.7±8.3 93.2±1.1 94.1±1.4 95.6±1.8 87.2±0.1 90.1±4.4 94.2±0.8 89.9±1.0 87.3±0.0 87.2±0.4

D
B6

100F 72.7±8.1 91.6± 0.4 93.2±1.1 92.6±0.4 92.1±0.4 92.5±0.5 91.8±0.9 93.0±0.5 92.3±0.3 91.4±0.2
50F 78.9±14.4 89.6±2.1 95.0±1.0 94.8±1.1 91.5±0.3 92.9±0.8 93.1±0.8 92.2±0.5 91.4±0.5 91.2±0.3
25F 86.3±8.8 91.7± 1.2 96.6±1.0 96.0±1.0 92.0±0.2 94.7±1.0 95.2±2.2 92.5±0.4 91.8±0.4 91.8±0.5
10F 78.3±9.9 93.5± 0.7 97.6±0.4 96.6±1.2 89.7±3.1 95.6±1.4 96.6±0.6 94.0±0.5 90.9±2.5 92.0±0.1
5F 78.1±10.0 93.3±0.8 97.6±0.4 96.6±1.3 88.5±7.6 95.0±1.4 96.5±1.1 92.3±0.5 88.7±7.5 92.2±0.1

D
B7

100F 56.4±11.2 74.9±0.8 74.9±1.2 79.8±0.8 76.1±0.7 74.1±1.2 75.3±1.1 79.8±1.0 75.4±0.7 74.7±1.1
50F 61.5±11.3 77.5±1.5 76.0±1.7 80.5±0.9 79.6±0.6 77.7±1.0 78.4±1.2 81.1±0.5 78.9±1.1 78.0±1.1
25F 69.7±8.0 79.3±0.5 79.9±0.9 81.6±0.4 80.3±0.4 79.1±0.4 80.0±0.6 81.3±0.4 80.8±0.3 78.9±2.4
10F 66.0±10.6 78.7±2.1 80.7±1.2 81.2±0.1 80.2±0.8 79.3±1.3 81.2±0.9 80.2±0.9 80.6±0.3 80.5±0.3
5F 66.2±10.3 79.9±0.8 79.8±1.1 80.9±0.6 80.5±0.4 77.1±2.9 80.9±0.8 77.9±0.4 80.4±0.2 78.5±3.9

D
B8

100F 61.2±4.9 70.5±0.6 70.5±0.6 66.1±0.6 70.4±0.3 70.6±0.4 70.5±0.6 68.1±0.3 70.4±0.3 70.5±0.6
50F 64.5±1.6 62.9±4.2 64.1±3.1 66.1±0.7 68.5±0.3 68.7±0.5 62.8±4.3 68.6±0.8 68.6±0.2 68.8±0.5
25F 56.0±7.9 59.9±3.1 65.4±0.8 66.0±1.2 70.2±0.3 66.0±0.4 62.3±2.0 70.0±0.8 68.1±0.6 66.7±0.4
10F 44.2±11.2 57.1±3.1 66.3±1.9 62.9±0.8 72.7±0.4 63.6±1.0 61.4±2.7 65.6±1.5 65.7±1.3 59.4±0.4
5F 42.7±12.0 57.1±2.5 67.5±0.6 61.9±0.9 72.0±1.4 63.0±2.1 61.9±1.2 65.8±4.4 68.0±0.9 53.9±0.6

D
B9

100F 77.5±1.0 71.4±0.4 71.3±0.4 70.6±0.9 71.3±0.7 71.7±0.7 71.2±0.5 75.7±0.6 67.5±0.9 71.4±0.4
50F 64.3±5.7 66.0±2.5 72.1±1.2 76.3±0.3 69.4±0.2 71.9±1.5 73.0±1.8 76.1±0.6 68.4±0.5 68.6±0.1
25F 53.6±10.1 67.5±3.9 73.8±2.5 77.0±0.3 74.0±0.3 76.2±0.3 73.9±2.8 74.5±0.4 70.1±0.1 64.2±0.1
10F 42.9±9.8 72.1±3.1 76.4±1.8 74.9±0.5 76.6±0.3 77.3±0.9 76.8±1.9 69.7±0.6 67.1±0.1 56.3±0.2
5F 37.1±6.8 73.2±2.5 76.1±1.3 71.8±0.9 78.0±0.3 80.3±1.2 76.3±1.6 65.6±1.1 67.0±0.3 42.3±1.0

D
B1

0

100F 32.1±5.2 54.6±0.5 54.4±0.5 44.5±1.2 54.2±0.6 56.2±0.5 54.9±0.2 49.6±0.2 52.1±0.3 54.6±0.5
50F 35.6±7.7 45.9±1.7 46.7±0.9 37.1±0.4 41.9±0.3 45.0±0.6 48.6±0.7 40.4±0.5 40.8±0.5 40.2±0.4
25F 35.4±6.1 43.4±2.0 45.5±2.4 32.7±0.9 36.7±0.6 41.6±1.4 46.2±2.4 34.7±0.5 35.5±0.2 34.2±0.2
10F 29.0±2.5 39.2±2.1 41.9±1.9 28.2±0.9 31.8±0.3 42.2±0.4 42.3±2.0 32.9±0.4 31.1±0.1 30.8±0.1
5F 21.2±1.8 35.9±2.0 38.7±2.6 25.1±0.8 25.8±0.2 42.0±0.8 39.6±2.5 31.6±0.9 25.8±0.2 25.2±0.3
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TA B L E 6 . 7 : Classification accuracy in percent± standard de-
viation, obtained on the 5 runs, the 6 A methods (and baseline)
and the 10 datasets. Baseline results are reported for 100F fea-
ture sets. The standard deviation is computed on the 5 folds
of the external cross-validation and the 5 independent runs.
Best results for each dataset and feature set are highlighted in

bold.

BoP CTK SVM-M SVM-G SVM-L SVM-BoPM SVM (100F)
A A A A A A X

DB1 54.5±1.7 54.2±0.9 46.3±5.1 43.4±2.7 40.8±2.3 43.5±0.8 83.7±1.5
DB2 41.8±4.2 42.4±1.1 33.1±1.7 33.3±2.2 33.1±3.5 32.3±3.4 80.8±0.4
DB3 48.4±0.6 46.7±1.3 47.0±4.9 44.1±2.8 40.4±1.5 39.3±2.3 80.9±1.7
DB4 45.7±1.5 42.9±3.2 40.0±1.5 40.0±2.3 42.0±1.6 42.6±3.3 83.1±0.7
DB5 96.8±0.1 96.3±0.1 95.4±0.5 89.8±4.1 90.9±0.8 91.7±0.6 88.5±0.5
DB6 98.6±0.1 98.4±0.1 95.1±0.3 93.8±0.4 95.9±1.0 94.4±1.1 91.4±0.2
DB7 82.5±0.2 82.9±0.5 81.6±0.8 78.5±0.5 79.1±1.4 79.1±0.9 74.7±1.1
DB8 69.9±0.6 70.5±0.4 55.9±0.4 68.1±0.3 62.4±0.9 67.5±1.2 70.5±0.6
DB9 78.1±0.2 81.7±0.2 74.5±0.6 75.6±0.7 76.6±0.4 80.3±0.3 71.4±0.4
DB10 35.3±0.3 36.4±0.2 30.8±0.6 35.0±0.2 34.4±0.7 14.9±0.3 54.6±0.5

3 4 5 6 7 8 9 10 11 12 13

6 groups have mean column ranks significantly different from ASVM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 5 features

F I G U R E 6 . 2 : Mean rank (circles) and critical difference
(plain line) of the Friedman/Nemenyi test, over 5 runs and
all datasets, obtained on partially labeled graphs. The blue
method has the best mean rank and is statistically better than
red methods. Labeling rate is 20% and the critical difference is
3.26. This figure shows the results when only 5 node features

are considered (5F datasets).
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4 5 6 7 8 9 10 11 12 13

6 groups have mean column ranks significantly different from ASVM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 10 features

F I G U R E 6 . 3 : Friedman/Nemenyi test considering 10 node
features (10F datasets); see Figure 6.2 for details. The critical

difference is 3.26.

2 4 6 8 10 12 14

7 groups have mean column ranks significantly different from ASVM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 25 features

F I G U R E 6 . 4 : Friedman/Nemenyi test considering 25 node
features (25F datasets); see Figure 6.2 for details. The critical

difference is 3.26.
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3 4 5 6 7 8 9 10 11 12 13

5 groups have mean column ranks significantly different from ASVM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 50 features

F I G U R E 6 . 5 : Friedman/Nemenyi test considering 50 node
features (50F datasets); see Figure 6.2 for details. The critical

difference is 3.26.

3 4 5 6 7 8 9 10 11 12 13

5 groups have mean column ranks significantly different from SVM-DK-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 100 features

F I G U R E 6 . 6 : Friedman/Nemenyi test considering 100 node
features (100F datasets); see Figure 6.2 for details. The critical

difference is 3.26.
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4 5 6 7 8 9 10 11 12

9 groups have mean column ranks significantly different from SVM-BoPM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Overall Friedman/Nemenyi test with all sets of features

F I G U R E 6 . 7 : Friedman/Nemenyi test considering all fea-
ture sets (5F, 10F, 25F , 50F, 100F). The critical difference is

1.46; see Figure 6.2 for details.

0 2 4 6 8 10 12 14 16 18

14 groups have mean column ranks significantly different from CTK-A

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Overall Friedman/Nemenyi test with all sets of features

F I G U R E 6 . 8 : Friedman/Nemenyi test considering all fea-
ture sets (5F, 10F, 25F, 50F, 100F), but computed only on
datasets DB5 to DB9 (driven by graph structure, A); see Fig-

ure 6.2 for details. The critical difference is 2.06.
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2 2.5 3 3.5 4 4.5 5 5.5 6

4 groups have mean column ranks significantly different from BoP-A

SVM-BoPM-A

SVM-L-A

SVM-G-A

SVM-M-A

CTK-A

BoP-A

Overall Friedman/Nemenyi test with all sets of features

F I G U R E 6 . 9 : Friedman/Nemenyi test considering all fea-
ture sets (5F, 10F, 25F, 50F, 100F), for methods based on graph
information alone (A); see Figure 6.2 for details. The critical

difference is 0.48.

Figure 6.7.

Overall performances on all datasets and all node feature sets

From Tables 6.6 to 6.7 and Figure 6.7, overall best performances on all dataset
and all node features sets are often obtained either by a SVM based on node
features combined with new features derived from the graph structure (Sec-
tion 6.3.1), or, unexpectedly, by the CTK-A sum-of-similarities method (using
graph structure only; see Section 6.3.3), which performs quite well on datasets
five to nine. The BoP-A node betweenness (using graph structure only, see
Section 6.3.3) is also competitive and achieves results similar to the sum-of-
similarities CTK-A method (as already observed in [156]).

The best method among the graph structure plus node features SVM is not
straightforward to determine (see Figure 6.7). From Figures 6.2 to 6.6, the main
trend is that the performance decreases when the number of features decreases,
which seems normal.

However, this trend is not always observed; for example, with the SVM-
M-AX method (SVM with features extracted from Moran’s index and features
on nodes, see Section 6.3.1) and dataset DB5, the performances rise when the
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0 5 10 15

9 groups have mean column ranks significantly different from SVM-BoPM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Overall Friedman/Nemenyi test with all sets of features

F I G U R E 6 . 1 0 : Friedman/Nemenyi test considering all fea-
ture sets (5F, 10F, 25F, 50F, 100F), but computed only on
datasets DB1 to DB4 and DB10 (driven by node features, X);

see Figure 6.2 for details. The critical difference is 2.06.

number of features decreases. This can be explained by observing that each
dataset labeling can be better explained in terms of its graph structure (graph-
driven datasets, DB5 to DB9), or by its node features (features-driven datasets,
DB1 to DB4, plus DB10).

To confirm this fact, the network structure autocorrelation was computed
for each class (i.e. for each yc) and the average is reported for each dataset.
This measure quantifies to what extent the target variable is correlated with its
neighboring nodes. The values are reported on Table 6.8 for Moran’s I , Geary’s
c and the LPCA contiguity ratio (see Section 6.3.1). For Moran’s I , high values
(large autocorrelation) indicate that the graph structure is highly informative.
This is the opposite for Geary and LPCA, as small values correspond to a large
autocorrelation. It can be observed that our hypothesis is clearly confirmed.

Nevertheless, from Tables 6.6 and 6.7 and Figure 6.7, the best overall per-
forming methods combining node features and graph structure are (excluding
the methods based on the graph alone, BoP-A and CTK-A), SVM-BoPM-AX
(see Section 6.3.1) and ASVM-AX (see Section 6.3.2). While performing bet-
ter on our datasets (their mean rank is slightly higher), they are however not
statistically different from SVM-M-AX, SVM-L-AX, and SVM-DK-AX.

Notice also that, from Figure 6.7, if we look at the performances obtained by
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2 3 4 5 6 7 8

5 groups have mean column ranks significantly different from SVM-BoPM-AX

SVM-KCA-AX

SVM-COT-AX

SVM-L-AX

SVM-BoPM-AX

SVM-DK-AX

ASVM-AX

SVM-X

SVM-M-AX

SVM-G-AX

SAR-AX

Overall Friedman/Nemenyi test with all sets of features

F I G U R E 6 . 1 1 : Friedman/Nemenyi test considering all fea-
ture sets (5F, 10F, 25F, 50F, 100F), performed only on meth-
ods combining graph structure and node features informa-
tion (AX, plus simple SVM-X as baseline). See Figure 6.2 for

details. The critical difference is 0.86.

a baseline linear SVM based on node features only (SVM-X), we clearly observe
that integrating the information extracted from the graph structure improves
the results. Therefore, it seems to be a good idea to consider collecting graph-
based information, which could improve the classification results.

Exploiting either the structure of the graph or the node features alone

Obviously, as already mentioned, datasets DB5 to DB9 are graph-driven, which
explains the good performances of the sum-of-similarities CTK-A and BoP-A
on these data. For these datasets, the features on the nodes do not help much
for predicting the class label, as observed when looking to Figure 6.8 where
results are displayed only on these datasets. It also explains the behavior of
method SVM-M-AX on dataset DB5, among others.

In this case, the best performing methods are the sum-of-similarities CTK-
A and the bag-of-paths betweenness BoP-A (see Section 6.3.3). This is clearly

2LPCA contiguity ratio is positive and lower-bounded by cr0 = 1 −
√
λmax (which tends to

be close to zero) where λmax is the largest eigenvalue of A. The upper bound is unknown [154].
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3.5 4 4.5 5 5.5 6 6.5 7

6 groups have mean column ranks significantly different from SVM-BoPM-AX

SVM-BoPM-A

SVM-BoPM-AX

SVM-L-A

SVM-L-AX

SVM-G-A

SVM-G-AX

SVM-M A

SVM-M-AX

SVM-X

Overall Friedman/Nemenyi test with all sets of features

F I G U R E 6 . 1 2 : Friedman/Nemenyi test considering all fea-
ture sets (5F, 10F, 25F, 50F, 100F), only considering methods
based on a graph embedding (plus regular linear SVM for
comparison). See Figure 6.2 for details. The critical difference

is 0.76.

confirmed by displaying the results of the methods based on the graph struc-
ture only in Figure 6.9 and the results obtained on the graph-driven datasets in
Figure 6.8. Interestingly, in this setting, these two methods ignoring the node
features (CTK-A and BoP-A) are outperforming the SVM-based methods.

Conversely, on the node features-driven datasets (DB1 to DB4 and DB10;
results displayed in Figure 6.10 and Tables 6.6 and 6.7 ), all SVM methods based
on node features (and graph structure) perform well while methods based on
the graph structure only obtain much worse results, as expected. In this setting,
the situation is rather similar to the overall results case (see Figure 6.7). The
two best techniques are SVM-BoPM-AX (see Section 6.3.1) and SVM-DK-AX
(see Section 6.3.2). However, this time, these two first ranked methods are not
significantly better than the simple linear SVM based on features only (SVM-X),
as shown in Figure 6.10. Thus, for the node features-driven datasets, the graph
structure does not bring much additional information.

From another point of view, Figure 6.11 takes into account all datasets and
compares only the methods combining node features and graph structure. In
this setting, the best ranked methods are again SVM-BoPM-AX, ASVM-AX
and SVM-DK-AX which are now significantly better than the baseline SVM-X
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TA B L E 6 . 8 : Mean autocorrelation of class membership com-
puted on all the investigated datasets. For Moran’s I , a high
value corresponds to a large autocorrelation. Conversely, for
Geary’s c and LPCA, a small value implies a large autocor-
relation. For each autocorrelation measure, – indicates the
presence of negative autocorrelation, a value close to 0 indi-
cates a lack of structural association and + indicates presence
of positive autocorrelation. See Section 6.3.1 and [134] for de-
tails. Datasets can be divided into two groups (more driven
by graph structure (A) or by features on nodes (X)), according
to these measures. I0 is equal to −1/(n− 1) ≈ 0 , where n is

the number of nodes.

A-driven + 0 – DB 5 DB 6 DB 7 DB 8 DB 9
Moran’s I > I0 = I0 < I0 1.27 1.09 0.66 0.53 0.79
Geary’s c < 1 1 > 1 0.09 0.09 0.33 0.19 0.12
LPCA c. ratio 2 cr0 > cr0 0.20 0.13 0.58 0.67 0.26
X-driven + 0 – DB 1 DB 2 DB 3 DB 4 DB 10
Moran’s I > I0 = I0 < I0 −0.22 −0.12 −0.15 −0.06 0.15
Geary’s c < 1 1 > 1 0.78 0.59 0.63 0.57 0.43

LPCA c. ratio 2 cr0 > cr0 2.54 2.10 1.86 1.90 0.82

(less methods are compared on more datasets).
Notice that SVM-KCA-AX performs better than SVM-COT-AX, but is not

significantly different from SVM-DK-AX, although SVM-DK-AX’s mean rank
is higher than SVM-KCA-AX’s mean rank.

Finally, the worst performing method is always SAR-AX, except if only
features-driven datasets are considered. Even in this case, SAR-AX outper-
forms only graph-based methods (see Figure 6.10).

Comparison of graph embedding methods

Concerning the embedding methods described in Section 6.3.1, we can con-
clude that Geary’s index (SVM-G-A and SVM-G-AX) should be avoided by
preferring the bag-of-paths modularity (SVM-BoP-AX), Moran’s index (SVM-
M-AX) or local principal component Analysis (SVM-L-AX). This is clearly
observable when displaying only the results of the methods combining node
features and graph structure in Figure 6.11. This result is further confirmed
when comparing only the methods based on a graph embedding in Figure 6.12.
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Discussion about time complexity

Table 6.5 shows a comparison of the computation times of the 16 classifiers.
Notice that, from columns Time 251 to Time 756, the number of nodes is multi-
plied by 3.012. In terms of ratio, the fastest methods are CTK-A (which has an
efficient sparse implementation, quasi-linear in number of samples/modes) for
graph-based classifiers and ASVM-AX for classifiers combining features and
structural information. Interestingly, those two classifiers actually achieved
good overall results previously. Notice that BoP-based methods are the slow-
est due to a full matrix inversion (O(n3)). Most other methods exhibit a nearly
quadratic behavior. Finally, notice that most SVM methods use the Liblinear
library [85], allowing Matlab to execute C code through a MEX file.

Summary of main findings

To summarize, the experiments lead to the following conclusions: The best
performing methods are highly dependent on the dataset. We observed (see
Table 6.8) that, quite naturally, some datasets are more graph-driven in the
sense that the network structure conveys important information for predicting
the class labels, while other datasets are more node features-driven and, in this
case, the graph structure does not help much. However, it is probably a good
idea to take into consideration information about the graph structure, because
this additional information can improve significantly the results, depending
on the dataset (see Figures 6.11 and 6.12).

If we consider the graph structure alone, the two best investigated methods
are the sum-of-similarities (CTK-A) and the bag-of-paths betweenness (BoP-A,
see Section 6.3.3). They clearly outperform the graph embedding methods,
but also the SVMs on some datasets. This is confirmed by a paired signed
Wilcoxon test: BoP-A and CTK-A outperform SVM-X at p < 10e−5.

When, in addition, informative features on nodes are available, it is worth
considering combining the information, and, in this context, we found that the
best performing methods are SVM-BoPM-AX (SVM with bag-of-paths mod-
ularity, see Section 6.3.1), ASVM-AX (SVM based on autocovariates, see Sec-
tion 6.3.2), and SVM-DK-AX (SVM based on a double kernel, see Section 6.3.2)
(see Figure 6.11). Taking the graph structure into account improves the results
over a baseline SVM considering node features only. This is confirmed (but
only at p < 0.05) for the two first methods by a paired signed Wilcoxon test:
SVM-BoPM-AX outperforms SVM-X with p = 0.042 and ASVM-AX outper-
forms SVM-X with p = 0.029. On the contrary, the p-value for SVM-DK-AX
against SVM-X is only 0.182.
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6.5 Conclusion

This work considered a data structure consisting in a graph and plain features
defined on the nodes of the graph. In this context, 16 semi-supervised clas-
sification methods were investigated to compare the feature-based approach,
the graph structure-based approach, and the dual approach combining both
information sources.

It appears that the best results are often obtained either by a SVM method
(the considered baseline classifier) based on plain node features combined with
a given number of new features derived from the graph structure (namely from
the BoP modularity or autocovariates), or by the sum-of-similarities and the
bag-of-paths modularity method, based on the graph structure only, which
perform well on some datasets for which the graph structure carries important
class information.

Indeed, we observed empirically that, quite naturally, some datasets can
be better explained by their graph structure (i.e. graph-driven datasets), or
by their node features (i.e. features-driven datasets). Consequently, neither
the graph-derived features alone or the plain features alone are sufficient to
achieve optimal performances. In other words, in some situations, standard
feature-based classification results can be improved significantly by integrating
information from the graph structure. In particular, the most effective methods
were based on the bag-of-paths modularity (SVM-BoPM-AX), autocovariates
(ASVM-AX) or a double kernel (SVM-DK-AX).

The take-away message can be summarize as follows: if the dataset is
graph-driven, a simple sum-of-similarities or a bag-of-paths betweenness al-
ready perform well, but this is not the case if the features on the nodes are
(more) informative. In both cases, SVM-BoPM-AX, ASVM-AX, SVM-DK-AX
still ensured good overall performances, as shown on the investigated datasets.

A key point is therefore to determine a priori if a given dataset is graph-
driven or features-driven. In this chapter, we proposed to use some well-
known spatial autocorrelation indexes to tackle this issue. Further investiga-
tions will be carried in that direction. In particular, how can we automatically
infer properties of a new dataset (graph-driven or features-driven) if all class
labels are not known? For instance, can we rely on measuring autocorrelation
based on features?

Finally, the present work does not analyze the scalability of the methods;
this is also left for further work.
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A bag-of-paths node
criticality measure

The analysis and the modeling of network data has become a popular research
topic in the last decade and is now often referred to as link analysis (in com-
puter science) and network science (in physics). Network data appear in virtu-
ally every field of science and is therefore studied in many different disciplines,
such as social sciences, applied mathematics, physics, computer science, chem-
istry, biology, economics, . . . Within this context, one important question that is
often addressed is the following: Which node seems to be the most critical, or
vital, in the network? The present work introduces such a new node criticality
measure, also called vulnerability, quantifying to what extent the deletion of
each node hurts the connectivity within the network in a broad sense, e.g., in
terms of communication, proximity, or movement. Criticality measures are
often considered as a subset of centrality measures, which are frequently used
as a proxy for quantifying criticality. Interested readers are invited to consult
the recent comprehensive review [162].

Indeed, a large number of centrality measures have been defined in various
fields, starting from social science (see, e.g., [96, 181, 83, 251, 146, 236] and [50]
for a survey). These quantities assign a score to each node of the graph G
which reflects to what extent this node is central by exploiting the structure
of the graph G, or with respect to the communication flow between nodes.
Centrality measures try to answer the following questions [149]: What is the
most representative, or central, node within a given graph (closeness central-
ity)? How critical is a given node with respect to the information flow in a
network (criticality)? Which node is the most peripheral in a social network
(eccentricity)? Which node is the most important intermediary in the network
(betweenness centrality)? Centrality scores try to answer to these questions
by proposing measures modeling and quantifying these different, somewhat
vague, properties of the nodes.
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This chapter introduces a new, efficient and effective, criticality measure:
the bag-of-paths (BoP) criticality. The quantity relies on the bag-of-paths frame-
work introduced in Chapter 4: the BoP criticality of a node measures the im-
pact of the node deletion on the total accessibility between nodes within the
network. More precisely, we propose to use the Kullback-Leibler divergence
between the bag-of-paths probabilities, computed before and after removal
of a node of interest, to quantifying relative accessibilities. The larger this
decrease in accessibility, the higher the impact of the node deletion, and thus
the higher its criticality.

The novelty of this approach can be understood as follows. Most of the tra-
ditional criticality measures are essentially based on two different paradigms
about the communication occurring in the network: optimal communication
based on shortest paths and random communication based on a random walk
on the graph. For instance, the Wiener index (described later in this chapter) is
based on shortest paths and the Kirchhoff index on random walks. However,
both the shortest path and the random walk have some drawbacks [90]: short-
est paths do not integrate the amount of connectivity between the two nodes
whereas random walks quickly loose the notion of proximity to the initial node
when the graph becomes larger [244].

Contrary to traditional measures, our criticality measure integrates both
proximity and amount of connectivity in the bag-of-paths framework [94].
Nodes that are both close and highly connected are qualified as highly acces-
sible. Our introduced bag-of-paths measures aim to quantify the accessibility
between the nodes. When the temperature parameter of the model is low (i.e.
close to zero, see Chapter 4), communication occurs through a random walk,
while for large temperatures, short paths are promoted.

The introduced measure is compared experimentally to already developed
criticality measures as well as to a sample of popular centrality measures,
briefly reviewed in this chapter. All those measures are compared through
a Kendall’s correlation analysis and a disconnection methodology [9, 123] in
Section 7.4. This empirical analysis is performed on a large number, and two
types, of randomly generated graphs (see Section 7.4.1).

In summary, this work has the following main contributions,

I A new criticality measure, showing good performance in the identifica-
tion of the most critical nodes of a network, is introduced.

I Many criticality measures introduced in the literature are reviewed and
are grouped using a Kendall’s correlation and two dendrograms.

I All those methods are compared experimentally using two disconnection
strategies on a large number of randomly generated graphs and on small
real-life social networks.
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Finally, this chapter is organized as follows: First, the underlying back-
ground and various notations are discussed in Section 7.1, then Section 7.2 in-
troduces ten centrality and criticality measures (some being quite well-known).
The bag-of-paths model described in [94] is summarized and the new BoP crit-
icality measure is derived in Section 7.3. Finally, those measures are assessed
and compared in Section 7.4.

7.1 Background and Notation

This section aims to introduce the necessary background and notation used in
this chapter. Most of them has already been presented in Chapter 2.

Let us just recall the Laplacian matrix L of the graph, introduced in Sec-
tion 2.4,

L = D−A (7.1)

where D = Diag(Ae) is the diagonal (out)degree matrix of the graph G con-
taining the ai• on its diagonal. One interesting property of L, widely used in
this Chapter, is that its eigenvalues provide important information about the
connectivity of the graph [63]. Another interesting property is that the number
of zero eigenvalues of L is equal to the number of disconnected subgraphs, or
connected components, of G [63]. Then, for a connected graph the smallest
eigenvalue of L is called the algebraic connectivity and has been shown to
be a good indicator of its overall connectedness (G is disconnected when its
algebraic connectivity is equal to zero).

Finally, the Moore-Penrose pseudoinverse of L is denoted as L+, and con-
tains elements l+ij . Due to the properties of the Moore-Penrose pseudoinverse,
its largest eigenvalue is the algebraic connectivity.

7.2 Related Work

In Section 7.4, a large set of criticality measures (see Table 7.1 for acronyms)
are compared experimentally, and briefly reviewed in this section (see [50,
90] for a more thorough description of these measures). It is convenient to
categorize them into three classes: node betweenness centrality measures (see
Section 7.2.1), node graph criticality measures (see Section 7.2.2), and global
criticality measures (see Section 7.2.3).

Notice that, in general, these centrality measures are computed on undi-
rected graphs (see Section 2.2), or, when dealing with a directed graph, by
ignoring the direction of edges. They are therefore denoted as undirec-
tional [250]. Measures defined on directed graphs are often called importance
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or prestige measures. They capture to what extent a node is important, promi-
nent, or prestigious with respect to the whole directed graph by considering
directed edges as representing some kind of endorsement. However, this kind
of measure is not discussed here.

One of the most interesting global criticality measure of the graph G, the
so-called connectivity, is often defined as the minimum number of nodes that
need to be removed to separate it into two disconnected sub-graphs [115, 216].
Unfortunately, this quantity is hard to compute (the problem is NP-hard) and
cannot be easily exploited in practice for this reason.

7.2.1 Node betweenness centralities

As already mentioned, the concept of criticality is closely related to the concept
of betweenness centrality; we therefore also investigate a few of the most well-
known betweenness and centrality measures. The measure is defined on each
node, identified by its index j.

I The simple node degree, or edge connection (EC). This quantity is sim-
ply the number of nodes connected to a node j, weighted by edge weights
in the case of a weighted graph. It is obtained by summing the entries
on the jth row of the adjacency matrix A. The idea is that if a node has
a high degree, it is more likely to hurt or disconnect the graph when
removed. It can be computed by

ECj = eT
jAe (7.2)

I The famous shortest path betweenness (SPB), introduced by Free-
man [96]. It counts the proportion of shortest paths connecting any two
nodes i and k, and passing through an intermediate node j of interest
(with i 6= j 6= k 6= i). The idea is that if a node contributes to a large num-
ber of shortest paths, it can be considered as an important intermediary
between nodes when the information is spread optimally along shortest
paths. More precisely,

SPBj =

n∑
i=1
i 6=j

n∑
k=1
k 6=i,j

η(j ∈ P∗ik)

|P∗ik|
(7.3)

where P∗ik is the set of all shortest paths from i to k, |P∗ik| is the total
number of such shortest paths ℘∗ik and η(j ∈ P∗ik) =

∑
℘∗ik∈P

∗
ik
δ(j ∈ ℘∗ik)

is the total number of such paths visiting node j. We used Brandes’
algorithm [49] to compute the SPB of each node of the graph.
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I The random walk betweenness (RWB), introduced by Newman [181]
and closely related to Brandes’ electrical centrality [51]. Newman intro-
duced the current flow betweenness centrality, which measures the cen-
trality of a node as the total sum of electrical currents that flow through it,
when considering all node pairs as source-destination pairs with a unit
current flow. The current flow betweenness is also called the random
walk betweenness centrality because of the well-known connection be-
tween electric current flows and random walks [78, 90]. The idea is thus
the same as for the SPB, but taking into account a random walk-based dif-
fusion of information instead of shortest paths. Notice that Brandes and
Fleischer [51] proposed a more efficient algorithm computing the ran-
dom walk betweenness for all nodes of a network. The properties and
computation of the current flow betweenness have also been discussed
by Bozzo and Franceschet [47]. Kivimaki et al. proposed a new between-
ness measure interpolating between the shortest path betweenness and
the random walk betweenness [145].

I Estrada’s centrality (EST). In [83], Estrada et al. defined a centrality
measure called subgraph centrality for a weighted undirected graph or
subgraph. It summarizes simply as

ESTj = eT
j

( ∞∑
k=0

Ak

k!

)
ej = eT

j diag(expm(A)) (7.4)

where expm(A) is the matrix exponential of A and diag(X) extract the
main diagonal of X. It is well-known that element a(k)

ij = [Ak]ij of matrix
Ak (A to the power k) is the weighted number of paths between node i
and node j with exactly k steps (see Chapter 2). The subgraph centrality
measure therefore integrates a contribution from all paths connecting
node j to himself, discounting paths according to their number of steps
(it favors shorter paths in terms of length). The intuition is that a node
should have a high centrality score if the closed paths (cycles) starting
from it are short and are visiting many different nodes [83].

7.2.2 Node criticalities

We now introduce the node criticalities studied in this work. As for the be-
tweenness, the criticality measure is defined on each node j.
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I Wehmuth’s criticality K (WK) is introduced in [251],

WKj =
λ

(j)
2

log2(dj)
(7.5)

where λ(j)
2 is the algebraic connectivity of the h-neighbourhood of node j

(the subnetwork composed by all nodes within h hops, or steps, of node j)
and dj is the degree of node j. Recall that the algebraic connectivity is the
second smallest eigenvalue of the Laplacian matrix L. The idea is to take
advantage of the algebraic connectivity property; the higher the value
of λ(j)

2 , the higher the connectivity/density of the subnetwork. Then,
λ

(j)
2 is divided by the logarithm of the node degree as locally computed

algebraic connectivities show a bias towards higher values on nodes with
high degree. This bias causes λ(j)

2 to be over-sensitive to the presence of
hubs [251].

I Klein’s edge criticality (KLE). Klein derived the analytical form of
this node criticality measure for several global measures, including the
Wiener index and the Kirchhoff index [146]. We used the measure based
on the Kirchhoff index here:

KLEj =

n∑
i=1

aij(ei − ej)
T(L+)2(ei − ej) (7.6)

The intuition behind the measure is the following. Klein’s edge (i, j)
criticality is defined as the sensitivity of the global network criticality
index (here the Kirchhoff index – defined in the next section) with respect
to the increase in the resistance of the edge (i, j) [146]. In other words,
it quantifies the impact of an increase in this resistance on the global
network. Edges having a high impact on the global network criticality
hurt most the network and are considered as highly critical. Then, edge
criticality is summed up over incident edges to provide a node criticality.

7.2.3 Global network criticalities

The following global criticality indexes are defined on the whole network G.
They quantify to what extent the network as a whole is efficient, that is, highly
interconnected and cohesive, with high accessibility. For a communication
network, this measure can be, e.g., the Wiener index – the sum of the shortest
path distances (which can be travel time, travel cost, . . . ) between all pairs of
nodes. An effective network is characterized by a low value of the Wiener
index as, then, distances between nodes are small in average.
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The impact of a node of interest on the global network accessibility measure
– the derived node criticality – is then quantified by evaluating the marginal
loss in global accessibility when the node of interest is not operating (i.e. has
simply been removed). This measure therefore reports how critical the node
is, relative to the entire graph. To evaluate the criticality of a particular node
j in a fixed graph G, the difference between the initial global network criti-
cality, cr(G), and the global criticality after deleting this node j, cr(G \ j), is
computed [50],

crj(G) = cr(G)− cr(G \ j) (7.7)

and the higher this value, the more critical node j is. Here, G \ j is graph G
whose node j and incident edges have been removed.

This node criticality is computed on several well-known global criticality
measures which are described now. We could also normalize the quantity
when it corresponds to a sum over all pairs of nodes by something like cr(G \
i)/((n − 1)(n − 2)) − cr(G)/(n(n − 1)). However, this would not change the
ranking of the nodes as the second term is a constant.

I The Wiener index (WIE) is defined as the sum of the shortest path dis-
tances between all node pairs (see, e.g., [50]),

WIE(G) =
1

2

n∑
i=1

n∑
j=1

∆
SP
ij (7.8)

where ∆
SP
ij is the shortest path distance. The underlying idea is that if the

sum of the distances between every node pairs is small, the network is
more likely to be well-connected.

I The Kirchhoff index (KIR) is similar to the Wiener index but uses the
resistance distance (the effective resistance, proportional to the commute-
time distance based on a random walk on the graph) [147], instead of the
shortest path distance, and has been recently used by Tizghadam and
al. in network theory for quantifying the robustness of a communication
network [236]. It can be easily computed by

KIR(G) =
1

2

n∑
i=1

n∑
j=1

∆
ER
ij (7.9)

where ∆
ER
ij is now the effective resistance between i and j, with ∆

ER
ii = 0

for each node i. The idea is thus the same as for WIE, but with a different
concept of distance.
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I The Kemeny index (KEM) represents the expected number of steps
needed by a random walker for reaching an arbitrary node from some
arbitrary starting node [142], when the starting and ending nodes are
selected according to the equilibrium distribution of the Markov chain.
Indeed, for an irreducible, aperiodic, Markov chain, it is known (see
Chapter 2.7.6 or [164, 185]) that the stationary distribution exists and is
independent of the initial state i. More precisely, the Kemeny index is

KEM(G) =

n∑
i=1

πi

n∑
j=1

πjmij =

n∑
j=1

πjmij (7.10)

where mij is the average first-passage time between node i and node j
and π is the stationary distribution. Equation (7.10) holds because it can
be shown that the quantity

∑n
j=1 πjmij is independent of the starting

node i [77]. This index measures the relative accessibility of all pairs of
nodes, putting more weight on the long-term frequently visited nodes
according to the stationary distribution.

I The Shield value (SHV) has recently been introduced [239]:

SHV(G) = λ1 (7.11)

where λ1 is the dominant eigenvalue of the adjacency matrix A. It is
closely related to the loop capacity and the path capacity of the graph,
that is, the number of loops and paths of finite length. The higher λ1, the
more loops and long path in the graph. As for Estrada’s centrality, the
underlying idea is that if a graph has many such loops and paths then
it is more likely to be well connected. The more the deletion of a node
lowers this value, the less the graph becomes connected, and therefore
the larger its criticality value.

I Assuming a connected graph, the Algebraic connectivity (ALC) is com-
puted from the Laplacian matrix L:

ALC(G) = λn−1 (7.12)

where λn−1 is the second smallest eigenvalue of L, see Section 2.4 for
details. λn−1 is related to the robustness of communication through the
graph: the larger the algebraic connectivity, the more difficult it is to cut
the graph into disconnected components [129].
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7.3 The proposed BoP Criticality

We now derive a new node criticality measure called the bag-of-paths criticality
(BPC). It is based on computing the effect of a node removal in the bag-of-
paths framework (BoP, see Chapter 4). An illustrative example is shown in
Section 7.3.3.

7.3.1 The bag-of-paths criticality: basic, standard case (BPC)

We now derive a closed-form formula for computing these probabilities when
an intermediate node j is deleted from the graph. Then, our BoP criticality
measure for node j is the relative entropy (or Kullback-Leibler divergence)
between the bag-of-paths probabilities – the relative accessibility (see Equa-
tion (4.9)) – before and after removing node j from G. It therefore quantifies to
what extent the relative accessibility is affected by the deletion of node j.

The intuition is the following. The bag-of-paths criticality measures the
global impact of a node deletion on the total relative accessibility of the nodes
in the network

I by computing this accessibility before and after node deletion,

I and then by computing their difference by means of the Kullback-Leibler
divergence.

I This difference computes the loss in accessibility when deleting each
node in turn.

Thus, in this work, a critical node is defined as a node whose deletion greatly
affects the relative accessibility between the remaining nodes. This criticality
measure will be referred as BPC. We now detail its derivation.

Reducing the support of the bag-of-paths probability distribution

First, let us introduce some new notation. In Equation (4.9), zik will be denoted
as zik(A) and Z as Z(A) since they are based on adjacency matrix A. Then, as
our criticality measure relies on the deletion of a node (say, node j), we need to
reduce the support of the bag-of-paths probability distribution to V \ j (the set
of nodes of G, with node j removed) by eliminating paths starting or ending
in j.

To do this, we introduce Z(−j)(A), which is Z based on A (the original
graph), but where the jth column and the jth row of Z have been removed.
Then, z(−j)

ik (A) with i 6= j and k 6= j is its i, k element. We further define
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P(−j)
ik (A) = P(−j)(s = i, e = k) with support V \ j based on the elements of

Z(−j)(A),

P(−j)
ik (A) =

z
(−j)
ik (A)

n∑
i′,k′=1
i′,k′ 6=j

z
(−j)
i′k′ (A)

, with i, k 6= j (7.13)

which corresponds to the BoP probabilities (see Equation (4.9)) based on the
whole original graph (A), but where the support of the discrete probability
distribution is reduced to the set of nodes different from j – we do not con-
sider node j as a potential source or destination node.

In practice, from this last equation, we observe that this can be done by
putting both row j and column j of Z to 0 and then summing over its elements,
as it is done in Algorithm 2 (line 7).

Computing the fundamental matrix after deleting one node from the graph

We now turn to the computation of the fundamental matrix Z of the graph
after deleting node j from A.

In this context, it is important not to confuse Z(−j)(A) (introduced in the
previous subsection) with Z(A(−j)), which is defined as matrix Z computed
from Equation (4.9), but based this time on A(−j): the adjacency matrix A
whose jth row and column have been removed (node j is deleted so that paths
in the graph cannot visit this node any more). In other words, A(−j) is the
adjacency matrix of G \ j. Thus the zik(A(−j)) with i 6= j and k 6= j are the
elements of Z(A(−j)). Notice that Z(−j)(A) and Z(A(−j)) have the same size;
both are (n− 1)× (n− 1) square matrices (node j is dismissed in both cases).

Then, from Equation (4.9), we define the bag-of-paths probabilities P(s =
i, e = k|s, e 6= j) based on A(−j) as

Pik(A(−j)) =
zik(A(−j))

n∑
i′,k′=1
i′,k′ 6=j

zi′k′(A
(−j))

, with i, k 6= j (7.14)

corresponding to the graph G with node j removed.
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The bag-of-paths criticality

Finally, the bag-of-paths criticality (BPC) is the Kullback-Leibler divergence
between the bag-of-paths probabilities, quantifying relative accessibilities, be-
fore and after node removal,

crj =

n∑
i,k=1
i,k 6=j

P(−j)
ik (A) log

(
P(−j)
ik (A)

Pik(A(−j))

)
(7.15)

and the larger this divergence, the larger the impact of the deletion of node j
on the overall accessibility.

Note that computing the bag-of-paths criticality for all the n nodes has a
time complexity of about O(n3 + n(n − 1)3). The first term corresponds to
the evaluation of P(−j)(A) (which requires a matrix inversion) and the second
term to n evaluations of P(A(−j)) (inversion of n matrices, after deleting each
node). This leads to an overall O(n4) time complexity. We now turn to a fast
approximation of this quantity.

7.3.2 The bag-of-paths criticality: a fast approximation (BPCf)

In this subsection, we modify the bag-of-paths criticality to obtain a O(n3)
time complexity instead of O(n4). It relies on the efficient approximation of
the entries of Z(−j) in terms of the fundamental matrix Z = (I −W)−1. This
version will be referred as BPCf.

The fast, approximate, bag-of-paths criticality

Let us first define

I zc
j = colj(Z) = Zej and zr

j = rowj(Z) = eT
jZ

I wc
j = colj(W) = Wej and wr

j = rowj(W) = eT
jW

where colj and rowj are respectively the jth column (a column vector) and
the jth row (a row vector) of the matrix.

The main idea behind the approximation is to set row j of matrix W to zero1

(providing W(−j)), instead of deleting row and column j of adjacency matrix
A, as required by the exact bag-of-paths criticality (see Equation (7.15)). Indeed,
this approximation appears to be much simpler that the original problem and

1Note that we obtain the same result if we set both row j and column j of W to zero – this way
of doing is equivalent to deleting row and column j of W and computing the fundamental matrix
and the bag-of-paths probabilities from this reduced matrix. However, setting only row j to zero
is simpler and provides the same results.
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reduces the set of paths to paths avoiding j (as if node j was deleted), as shown
below. Then, the bag-of-paths criticality is approximated by the Kullback-
Leibler divergence between the bag-of-paths probabilities, as before,

crf
j =

n∑
i,k=1
i,k 6=j

P(−j)
ik (A) log

(
P(−j)
ik (A)

Pik(W(−j))

)
(7.16)

using this time W(−j) for computing the fundamental matrix and the bag-
of-paths probabilities (instead of A(−j) in Equation (7.15)). However, this
only results in an approximation of the exact solution, as discussed later in
Subsection 7.3.2. We now detail how to approximate efficiently the bag-of-
paths probabilities from the matrix W(−j).

Computing the fundamental matrix after setting row j of matrix W to zero

We now turn to the computation of the fundamental matrix Z of the graph
after setting row j of W to zero.

Indeed, turning node j into a killing, absorbing, node (no outgoing edges
from this node) can be achieved by defining a new matrix W(−j) = W −
ejw

r
j as W is the elementwise (Hadamard) product between Pref and C (see

Equation (4.4)). Doing so, row j of W is set to zero, meaning that node j
cannot be an intermediate node anymore, as if node j was deleted. Thus
paths connecting i and k (with i, k 6= j) cannot visit j any more: this node
is excluded from the paths. Moreover, this actually corresponds to a simple
rank-one matrix update.

By exploiting this property, we obtain a simple formula for the update of
the fundamental matrix:

Z(W(−j)) = (I−W(−j))−1 = Z−
zc
jz

r
j

zjj
(7.17)

where only the entries i, k 6= j of Z(W(−j)) are meaningful. Recall that zc
j is a

column vector while zr
j is a row vector. The rest of the subsection is dedicated

to the derivation of this result and can be skipped at first reading.
Indeed, this results from a simple application of the Sherman-Morrison

formula (see, e.g., [109, 174, 214]) for the inverse of a rank-one update of a
matrix: if c and d are column vectors,

(B + cdT)−1 = B−1 − B−1cdTB−1

1 + dTB−1c
(7.18)
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Now, from W(−j) = W − ejw
r
j , we have (I −W(−j)) = (I −W) + ejw

r
j . By

setting B−1 = Z, B = (I −W), c = ej and d = (wr
j)

T in Equation (7.18), we
obtain for (7.17)

Z(W(−j)) = (I−W(−j))−1 = Z−
Zejw

r
jZ

1 + wr
jZej

(7.19)

Let us first compute the term wr
jZ appearing both in the numerator and the

denominator of the previous equation. Since Z = (I −W)−1, (I −W)Z = I,
and thus

wr
jZ = ((wr

j)
T − ej + ej)

TZ

= −(ej − (wr
j)

T)TZ + eT
jZ

= −eT
j + zr

j = zr
j − eT

j (7.20)

From Equation (7.20), the denominator of the second term in the right-hand
side of Equation (7.19) becomes

1 + wr
jZej = 1 +

(
zr
j − eT

j

)
ej = zr

jej = zjj (7.21)

Moreover, also from (7.20), the numerator of the second term in the right-
hand side of Equation (7.19) is

Zejw
r
jZ = zc

j

(
zr
j − eT

j

)
(7.22)

We substitute the results (7.21) and (7.22) in the denominator and the nu-
merator of Equation (7.19), providing

Z(W(−j)) = Z−
zc
j

(
zr
j − eT

j

)
zjj

(7.23)

However, row and column j should neither be taken into account, nor used,
and can therefore be put to zero. Indeed, since the last term of the numerator
in Equation (7.23), zc

je
T
j , only updates the jth column, it can safely be ignored

(this column j is useless and will never be used, as it corresponds to the deleted
node), resulting in redefining the quantity as

Z(W(−j)) = (I−W(−j))−1 = Z−
zc
jz

r
j

zjj

and now the jth row as well as the jth column of Z(W(−j)) are equal to zero.
Indeed, elementwise, this last equation reads zik(W(−j)) = zik − zijzjk/zjj ,
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which is equal to zero both when i = j and k = j. We therefore obtain ex-
actly Equation (7.17). Thus, the fundamental matrix Z needs to be inverted
only once and the elements zik(A(−j)) in Equation (7.14) are approximated by
zik(W(−j)) for computing the approximate bag-of-paths probabilities.

The resulting matrix has a jth row as well as a jth column equal to zero
and it can be shown that each element zik(W(−j)) of Z(W(−j)) corresponds to

zik(W(−j)) =
∑

℘∈P(−j)
ik

π̃ref(℘) exp [−θc(℘)] (7.24)

where P(−j)
ik is the set of paths avoiding node j.

The approximate bag-of-paths probabilities

The approximate bag-of-paths probabilities are computed from W(−j) in the
same way as for the standard bag-of-paths (see Equation (7.14)),

Pik(W(−j)) =
zik(W(−j))

n∑
i′,k′=1
i′,k′ 6=j

zi′k′(W
(−j))

, with i, k 6= j (7.25)

where the elements of the fundamental matrix are computed from Equa-
tion (7.17) this time.

Finally, the fast approximation of the criticality measure is computed from
these approximate bag-of-paths probabilities through Equation (7.16). The
algorithm is detailed in Algorithm 2, where the probabilities P(−j)

ik (A) and
Pik(W(−j)) are respectively gathered in matrices Π and Π(−j).

Discussion of the approximation

It should be noted that this procedure only computes an approximation of the
BoP probabilities Pik(A(−j)) (defined in Equation (7.14)) when removing an in-
termediate node j. Indeed, for computing the exact probabilities on the graph
G \ j, the natural random walk transition probabilities (the reference probabil-
ity matrix Pref ) should also be updated, as the edges entering node j cannot
be followed any more. In our approximate procedure, these reference proba-
bilities are not updated when computing W(−j) (see Equation (4.4)), causing
some (usually small) disturbance in comparison with explicitly deleting the
node j and recomputing the quantities (including transition probabilities) from
this new graph G \ j. Relative performances of the exact BoP criticality and
the approximated BPCf criticality are investigated in the experiments.
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Note that the expression could be adapted to exactly reflect node deletion,
but the update formula becomes much more complex and we did not observe
any significant difference between the two approaches in our experiments (see
the experimental section).

One way to render the procedure exact would be to instead minimize ex-
pected cost subject to a fixed entropy constraint (as in [208]), instead of the
Kullback-Leibler divergence in Equation (4.1). This results in redefining the
W matrix as

W = exp[−θC] (7.26)

instead of (4.4). This solves the problem of the Pref update since this transition
matrix does not appear any more in the computation of W and Z. However,
experiments showed that this choice performs slightly worse (therefore not
reported here) than the approximate update introduced in this section.

An elementary study of the empirical time complexity of the two versions
BPC and BPCf is reported in Figure 7.1. Recall that the overall complexity for
BPC is O(n4) and O(n3) for BPCf. For a 3000-nodes graph, the saving factor is
greater than 10. Notice that no sparse or optimized implementation were used
in the study. The CPU is a simple Intel(R) Core(TM) i5-4310 at 2.00 GHz with
8 Go RAM and the programming language is Matlab.

7.3.3 Illustrative example

A small toy graph, depicted on Figure 7.2, is now used as an illustrative exam-
ple. This graph has six nodes: the (rounded) BPC value for each node is 6.3,
8.5, 5.5, 6.2, 7.1, 6.3, respectively. It corresponds to node ranking 2, 5, 6, 1, 4, 3.

7.4 Experimental comparisons

In this section, the bag-of-paths criticalities (both the exact one (BPC) and the
fast approximate one (BPCf)) and the other centrality measures introduced in
Section 7.2 are compared (see Table 7.1 and 7.2 for a reminder) on the two
types of graphs described in Subsection 7.4.1. To do so, we followed a com-
mon methodology [9, 123, 82, 191, 209] described in subsection 7.4.2 and we
report first a simple correlation analysis between rankings in Subsection 7.4.3.
Then, results are compared and discussed in Subsection 7.4.4. Finally, the same
comparison and discussion is applied to 20 real-life small social networks in
Subsection 7.4.5.
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F I G U R E 7 . 1 : Empirical complexity analysis: computation
time (in seconds) in function of network size (number of
nodes). The overall complexity for BPC (upper curve) isO(n4)
(a matrix inversion per node) and O(n3) for BPCf (lower
curve, only one matrix inversion plus fast updates). We ob-
serve that BPCf scales better than BPC; for instance, for a 3000-

nodes graph, the saving factor is larger than 10.

node 1

node 2

node 3

node 4

node 5

node 6

F I G U R E 7 . 2 : A small toy graph. The (rounded) BPC value
for each node is 6.3, 8.5, 5.5, 6.2, 7.1, 6.3, respectively. It corre-
sponds to the node ranking 2, 5, 6, 1, 4, 3, which seems legit.
Conversely, WIE succeeds to identify node 2 as the most criti-
cal, but the second node in the ranking is node 3, which looks

counter-intuitive.
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TA B L E 7 . 1 : List of all measures compared in this study, to-
gether with their type, acronym, and computational time. No-
tice that Shortest Path and Random Walk Betweenness algo-
rithms are fast, optimized, versions. The other algorithms
were implemented in Matlab, as described in Section 7.2. Fur-
ther notice that the Matlab implementation of the matrix ex-
ponential is very efficient (it is used for computing Estrada’s

node betweenness).

Name Type Acronym Description Time
Baseline (random disconnection) - BL Subsection 7.4.2 < 0.1s
Edge Connectivity Node Betw. EC See Eq. 7.2 < 0.1s
Shortest Path Betweenness Node Betw. SPB See Eq. 7.3 0.14s
Random Walk Betweenness Node Betw. RWB Subsection 7.2.1 < 0.1s
Estrada Index Node Betw. EST See Eq. 7.4 < 0.1s
Wehmuth’s K Node Crit. WK See Eq. 7.5 5.11s
Klein Index Node Crit. KLE See Eq. 7.6 12.4s
Wiener Index Graph Crit. WIE See Eq. 7.8 32.0
Kirchhoff Index Graph Crit. KIR See Eq. 7.9 23.5
Kemeny Index Graph Crit. KEM See Eq. 7.10 51.2
Shield Value Graph Crit. SHV See Eq. 7.11 8.03s
Algebraic connectivity Graph Crit. ALC See Eq. 7.12 7.09s
Bag-of-paths criticality (standard) Node Crit. BPC See Eq. 7.17 10.0s
Bag-of-paths criticality (fast) Node Crit. BPCf See Eq. 7.15 3.59s

TA B L E 7 . 2 : List of measures requiring the tuning of a param-
eter. Tested values as well as the most frequent value (mode)

are reported.

Name Param. Tested values Mode
Wehmuth’s K h [1,2,3,4,5,6] 1 (34%)
Bag-of-paths criticality (standard version) θ 10[−6,−3,−2,−1,0,1] 1 (48%)
Bag-of-paths criticality (fast version) θ 10[−6,−3,−2,−1,0,1] 10 (42%)
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Algorithm 2 Computing the approximate bag-of-paths criticality of the nodes of a
graph.

Input:
– A weighted undirected graph G containing n nodes.
– The n× n adjacency matrix A associated to G, containing affinities.
– The n× n cost matrix C associated to G.
– The inverse temperature parameter θ.

Output:
– The n× 1 approximate bag-of-paths criticality vector cr containing the change in
the probability distribution of picking a path starting in node i and ending in node
k, when each node j is deleted in turn.

1. D← Diag(Ae) . the row-normalization matrix; e is a column vector full of 1s
2. Pref ← D−1A . the reference transition probability matrix
3. W← Pref ◦ exp [−θC] . elementwise exponential and multiplication ◦
4. Z← (I−W)−1 . the fundamental matrix
5. for j = 1 to n do . compute criticality for each node j in turn
6. zr

j ← eT
jZ and zc

j ← Zej . copy row j and column j of Z
7. Z′ ← Z− ejz

r
j − zc

je
T
j + zjjeje

T
j . set row j and column j of Z to 0 for dis-

regarding paths starting and ending in j, but keeping those passing through
j. Note that the last term is introduced because the diagonal element zjj is
subtracted twice.

8. Π ← Z′

eTZ′e
. normalize in order to obtain the bag-of-paths probability

matrix whose support is now V \ j

9. Z(−j) ← Z−
zc
jz

r
j

zjj
. update of matrix Z when removing row j from W

10. Π(−j) ← Z(−j)

eTZ(−j)e
. normalize in order to obtain the corresponding bag-

of-paths probabilities after deletion of row j of W
11. Remove both row j and column j from Π and Π(−j)

12. π ← vec(Π) and π(−j) ← vec(Π(−j)) . stack probabilities into column
vectors by using the vec operator

13. crj ← (π(−j))T log(π(−j) ÷ π) . compute Kullback-Leibler divergence
with ÷ being the elementwise division. It is assumed that 0 log 0 = 0 and
0 log(0/0) = 0

14. end for
15. return cr

7.4.1 Datasets

We used two well-known graph generators [24, 43] to build a set of 200 graphs:
100 are generated using Erdős-Rényi’s model and an additional 100 using
Albert-Barabási’s model. Each of these models has different variants; the one
we used is detailed in Section 2.8. The number of nodes is set randomly for
each graph between 5 and 500. Notice that by construction, all generated graph
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are unweighted.

7.4.2 Disconnection strategies

To study the performances of the different centrality/criticality measures, we
simulate the effect of network attacks consisting in deleting its nodes sequen-
tially in the order provided by the measure – the most critical nodes being
deleted first. This is a natural way of assessing node criticality [9, 123]. We
then record, for each network and each measure, the results of this sequen-
tial node deletion by measuring its gradual impact on network connectivity.
A good criticality measure hurts most the network by, e.g., disconnecting it
in several connected components, each preferably having an equal size – a
balanced partition.

In practice, we first compute a criticality ranking of all nodes according to
each different centrality/criticality measure introduced in the previous section.
This ranking can be achieved in two different way: (1) it is computed once for
all from the whole graph G (one single ranking), or (2) it is re-computed after
each node deletion. With this last option, the centrality/criticality measures
must be re-computed n − 1 times which is time-consuming. We therefore
decided to update the ranking only 100 times in total (except, obviously, for
graphs with n < 100 nodes). This last option will be referred as 100-ranking.

Recall that, to evaluate the criticality of a node j with respect to a global
graph criticality measure, the difference between the graph criticality of G \ j
and the global graph G criticality is computed (see Equation (7.7)).

Once those node rankings have been computed for each measure, the sim-
ulated attacks can start. Nodes are deleted in decreasing order of criticality.
After each node deletion, the Biggest Connected Component size (BCC, the
number of nodes contained in the largest connected component) is recorded [9,
123]. The smaller this value, the more effective the attack and thus the more
effective the criticality index (see Figure 7.3 for an example). This performance
measure quantifies to what extent the network is decomposed in several bal-
anced parts (no giant component is left). If, for example, the node deletion
strategy (the criticality ranking) is very inefficient, and it never disconnects
the network, the BCC only decreases by one unit at a time. On the contrary,
if it cuts the network into two equally sized parts, the BCC is divided by two,
which corresponds to a large decrease.

By further normalizing with respect to the size of the graph, that is, dividing
BCC by the current number of nodes, we get the Relative Biggest Connected
Component size (RBCC) which is the performance indicator used in the exper-
iments. It is then possible to draw a plot of RBCC versus the number of deleted
nodes (1, 2, 3, . . . , n) [9, 123]. Then, to summarize those plots, we sum up the
Area Under the Curve (AUC). The smaller this AUC, the better the method
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F I G U R E 7 . 3 : Example of Biggest Connected Component
size recorded when nodes are removed following criticality
rankings. The network is an Albert-Barabási (AB) 60-nodes
graph. The two criticality rankings are BPC (lower curve) and
BL (upper curve) and are computed once before starting to
remove nodes. The BPC ranking is more efficient in detecting
the critical nodes, as their removal quickly disconnects the

network.

since the deletion of the most critical nodes (according to the ranking) quickly
disconnects the network into balanced components, leading to smaller RBCC
(see the illustrative example in Figure 7.3).

Finally, we report our results as follows: we perform a Friedman/Nemenyi
test [74] and, in addition, we also compute the mean and the standard devia-
tion of the AUC across all of the AB and ER generated graphs, providing more
detailed results. Results can be found on Table 7.5 and 7.6; the higher the
ranking, the better the criticality measure.

If a parameter is present, it is tuned as follows: for each graph, a range of
values is tested and the best one is chosen for the disconnection experiment
(the size of the graph can influence the parameter choice). This reflects the
case of a real attack (we assume that the attacker has access to the network
structure and can test the effect of different parameters). Parameters could
be tuned again after each node deletion, but it would be too computationally
intensive, so we did not investigate this approach. For information, best value
of parameters h and θ are reported on Table 7.2.
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For comparison, we also consider the case where nodes are simply removed
at random and independently (BL for baseline). It corresponds to a random
failure or a random attack, which has been studied theoretically in the litera-
ture (see [9] for an example).

7.4.3 Preliminary exploration: correlation analysis

The different centrality/criticality measures were first compared by comput-
ing two Kendall’s correlation tests between each ranking. This is reported
on Table 7.3 for both a small and a larger value of the parameters of our cen-
trality/criticality measures: θ (BPCf and BPC) and h (WK). The small θ and
h were set to 10−6 and 1, respectively, while the larger θ and h were 10 and
6. To summarize and to make things more visual, dendrograms were built
above with a Ward hierarchical clustering (see, e.g., [249, 232, 155]) based on
Kendall’s correlation matrices (Figure 7.4).

7.4.4 Experimental results and discussion

Detailed results are presented in Tables 7.5, 7.6, 7.7, and 7.1 lists the different
tested methods together with their acronym. Note that, when performing the
Friedman/Nemenyi test comparing the different rankings provided by the
methods, the critical difference is equal to 1.97, meaning that a measure is
considered as significantly better than another if its rank is larger than this
amount.

On Tables 7.5 and 7.6, we observe that on Albert-Barabási (AB), single rank-
ing and 100-ranking, the Friedman/Nemenyi test [74] cannot conclude that our
proposed model (BPC) is better than its approximation (BPCf), and vice versa.
On the ER graphs, single ranking and 100-ranking, the results obtained by BPC
and BPCf are significantly different but still close in comparison to the other
criticalities. It means that the considered approximation seems reasonable, at
least on the studied datasets.

We further observe from the same experiments (Tables 7.5 and 7.6) that BPC
is significantly better than all the other tested measures on ER graphs. On AB
graphs, it cannot be concluded that BPC is significantly better than RWB in the
case where only one ranking is performed (single ranking). This is probably
related to the fact that BPC is based on a random walk, as RWB is. Moreover, if
an updated ranking is used instead (100-ranking), then BPC is not significantly
better than WK – while still obtaining better performances. We conclude that
the introduced criticality measures (BPC and BPCf) perform well in all contexts
as they always perform better (and, most of the time, significantly better) than
the competing measures, at least on the investigated data sets. However, this
advantage is not always statistically significant when compared to RWB (single
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TA B L E 7 . 3 : Mean Kendall’s correlation between the inves-
tigated measures over our 200 graphs. Above the main di-
agonal: results for the larger θ and h (respectively 10 and 6).
Below the main diagonal: results for the smaller θ and h (re-

spectively 10−6 and 1).

EC SPB RWB EST WK KLE WIE KIR KEM SHV ALC BPC BPCf
EC 1.000 0.878 0.889 0.776 0.975 0.345 0.709 0.756 0.685 0.735 0.433 0.764 0.852
SPB 0.878 1.000 0.879 0.673 0.856 0.399 0.667 0.736 0.642 0.637 0.452 0.765 0.817
RWB 0.889 0.879 1.000 0.632 0.874 0.404 0.637 0.804 0.627 0.599 0.423 0.798 0.871
EST 0.776 0.673 0.632 1.000 0.785 0.134 0.756 0.592 0.696 0.948 0.311 0.503 0.559
WK 0.338 0.311 0.293 0.134 1.000 0.329 0.747 0.793 0.721 0.752 0.427 0.738 0.815
KLE 0.345 0.399 0.404 0.134 0.332 1.000 0.140 0.332 0.109 0.106 0.356 0.465 0.443
WIE 0.709 0.667 0.637 0.756 0.075 0.140 1.000 0.782 0.838 0.768 0.301 0.569 0.576
KIR 0.756 0.736 0.804 0.592 0.161 0.332 0.782 1.000 0.734 0.600 0.350 0.759 0.770
KEM 0.685 0.642 0.627 0.696 0.086 0.109 0.838 0.734 1.000 0.708 0.297 0.504 0.535
SHV 0.735 0.637 0.599 0.948 0.096 0.106 0.768 0.600 0.708 1.000 0.292 0.490 0.539
ALC 0.433 0.452 0.423 0.311 0.302 0.356 0.301 0.350 0.297 0.292 1.000 0.377 0.392
BPC 0.756 0.757 0.789 0.476 0.307 0.504 0.482 0.682 0.445 0.454 0.411 1.000 0.885
BPCf 0.923 0.858 0.907 0.687 0.296 0.377 0.687 0.817 0.667 0.661 0.424 0.748 1.000
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TA B L E 7 . 4 : Ward dendrograms of studied criticality mea-
sures. Distances are based on Kendall’s correlation of Ta-
ble 7.3. The smaller the height (Y-axis) of joining branches,
the closer the measures. As BPCf, BPC and WK depend on
a parameter, two cases are considered: a larger value of the
parameters and a smaller value. The small θ and h are 10−6

and 1, respectively, while the larger θ and h are 10 and 6.
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TA B L E 7 . 5 : Results obtained with the single ranking dis-
connection strategy described in Subsection 7.4.2. The Fried-
man/Nemenyi ranking is presented for 100 AB graphs and
100 ER graphs, together with the mean ± standard deviation
of the obtained relative biggest connected component area un-
der the curve (AUC). Critical difference is equal to 1.97. For
the ranking, the larger is the better whereas, for AUC, smaller
is better. Bold methods are not significantly different from the

top method.

100 AB graphs: single ranking 100 ER graphs: single ranking
measure ranking AUC measure ranking AUC
BPC 12.750 0.3092 ±0.163 BPC 12.925 0.8634 ±0.180
BPCf 12.265 0.3103 ±0.164 BPCf 10.695 0.8773 ±0.182
RWB 11.415 0.3158 ±0.167 ALC 10.155 0.8851 ±0.167
KIR 10.285 0.4550 ±0.255 SPB 10.010 0.8851 ±0.167
WK 9.845 0.3246 ±0.175 RWB 9.780 0.8827 ±0.175
SPB 9.210 0.3283 ±0.172 KIR 8.925 0.8954 ±0.150
EC 8.780 0.3276 ±0.176 WK 7.855 0.8937 ±0.168
KLE 7.840 0.3577 ±0.208 EC 7.520 0.8959 ±0.165
WIE 5.015 0.5188 ±0.242 WIE 6.800 0.9112 ±0.131
ALC 4.890 0.4023 ±0.194 KEM 5.845 0.9092 ±0.145
KEM 4.830 0.5226 ±0.246 EST 4.405 0.9113 ±0.156
EST 3.790 0.4666 ±0.224 SHV 3.935 0.9207 ±0.129
SHV 2.615 0.5035 ±0.185 BL 3.400 0.9368 ±0.106
BL 1.470 0.7078 ±0.193 KLE 2.750 0.9273 ±0.134

TA B L E 7 . 6 : Results of the Friedman/Nemenyi test obtained
with the 100-ranking disconnection strategies. See Table 7.5

for details.

100 AB graphs: 100-ranking 100 ER graphs: 100-ranking
measure ranking AUC measure ranking AUC
BPCf 12.565 0.2866 ±0.151 BPC 13.285 0.7837 ±0.173
BPC 11.860 0.2896 ±0.152 ALC 11.535 0.7987 ±0.150
WK 11.410 0.2924 ±0.155 BPCf 11.260 0.7994 ±0.175
RWB 10.555 0.2937 ±0.152 RWB 9.765 0.8052 ±0.177
EC 10.220 0.2953 ±0.157 KIR 8.665 0.8583 ±0.145
EST 9.110 0.2986 ±0.158 WK 8.515 0.8114 ±0.177
SPB 8.875 0.3048 ±0.155 SPB 8.325 0.8122 ±0.174
KLE 6.705 0.3278 ±0.170 EC 7.845 0.8143 ±0.175
KEM 5.150 0.5455 ±0.273 KEM 5.905 0.8695 ±0.141
KIR 5.080 0.5485 ±0.280 EST 5.440 0.8260 ±0.176
ALC 4.530 0.3557 ±0.169 WIE 5.305 0.8843 ±0.121
SHV 4.190 0.3701 ±0.171 SHV 4.010 0.8479 ±0.158
WIE 2.635 0.6075 ±0.271 KLE 3.095 0.8631 ±0.171
BL 2.115 0.6220 ±0.217 BL 2.050 0.9022 ±0.117
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TA B L E 7 . 7 : Another perspective on the results obtained
with the disconnection strategies described in Subsection 7.4.2.
See Table 7.5 for details. The critical difference is equal to 4.30,
meaning that a measure is significantly better than another if
their rank difference is larger than this amount. For the rank-
ing, the larger is the better while for AUC, the smaller is the
better. In each column, the methods in bold are the best ones

or are not significantly different from the overall best one.

100 AB graphs 100 ER graphs
measure ranking AUC measure ranking AUC
100-BPC 25.790 0.2896 ±0.152 100-BPC 27.185 0.7837 ±0.173
100-BPCf 25.025 0.2866 ±0.151 100-BPCf 25.200 0.7994 ±0.175
100-WK 24.440 0.2924 ±0.155 100-ALC 24.945 0.7987 ±0.150
100-RWB 23.480 0.2937 ±0.152 100-RWB 23.640 0.8052 ±0.177
100-EC 23.065 0.2953 ±0.157 100-WK 22.455 0.8114 ±0.177
100-EST 21.810 0.2986 ±0.158 100-SPB 22.130 0.8122 ±0.174
1-BPC 20.410 0.3092 ±0.163 100-EC 21.645 0.8143 ±0.175
1-BPCf 19.945 0.3103 ±0.164 100-KIR 20.045 0.8583 ±0.145
100-SPB 19.835 0.3048 ±0.155 100-EST 19.210 0.8260 ±0.176
1-RWB 18.560 0.3158 ±0.167 100-SHV 17.265 0.8479 ±0.158
1-WK 16.560 0.3246 ±0.175 100-KEM 17.220 0.8695 ±0.141
1-KIR 15.915 0.4550 ±0.255 100-WIE 16.195 0.8843 ±0.121
1-SPB 15.610 0.3283 ±0.172 100-KLE 15.110 0.8631 ±0.171
100-KLE 15.460 0.3278 ±0.170 1-BPC 14.960 0.8634 ±0.180
1-EC 15.275 0.3276 ±0.176 1-BPCf 12.325 0.8773 ±0.182
1-KLE 13.425 0.3577 ±0.208 1-RWB 11.435 0.8827 ±0.175
100-KIR 11.455 0.5485 ±0.280 1-SPB 11.400 0.8851 ±0.167
100-KEM 11.315 0.5455 ±0.273 100-BL 11.345 0.9022 ±0.117
100-ALC 10.930 0.3557 ±0.169 1-ALC 11.290 0.8851 ±0.167
100-SHV 10.835 0.3701 ±0.171 1-KIR 10.180 0.8954 ±0.150
1-ALC 7.890 0.4023 ±0.194 1-WK 9.095 0.8937 ±0.168
1-KEM 7.670 0.5226 ±0.246 1-EC 8.665 0.8959 ±0.165
1-WIE 7.630 0.5188 ±0.242 1-WIE 7.600 0.9112 ±0.131
1-EST 6.460 0.4666 ±0.224 1-KEM 7.040 0.9092 ±0.145
100-WIE 6.235 0.6075 ±0.271 1-EST 5.485 0.9113 ±0.156
1-SHV 4.765 0.5035 ±0.185 1-SHV 4.985 0.9207 ±0.129
100-BL 3.625 0.6220 ±0.217 1-BL 4.345 0.9368 ±0.106
1-BL 2.585 0.7078 ±0.193 1-KLE 3.605 0.9273 ±0.134
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ranking on AB graphs) and WK (100-ranking on AB graphs). Notice that ALC
obtains good performance on ER graphs (single ranking and 100-ranking), but
is less efficient for AB graphs.

Besides this, when examining the results of the other criticality measures,
we often find the RWB, KIR, WK, and SPB measures in the top-5 best meth-
ods (Tables 7.5 and 7.6). Note also that the EC (the degree) is quite efficient
combined with multiple ranking on AB graphs, given its simplicity. At the
bottom of the rankings, KLE, WIE, KEM, EST, and, SHV often appear to be
even less effective than EC. Since EC is a really obvious measure that can be
easily computed, it would certainly be interesting to use EC instead of other,
more sophisticated, measures in many situations. In particular, EC is quite
efficient on AB graphs, if recomputed after each node deletion. It can also be
noted that KLE is not performing well on ER graphs (it can even be worse than
the random baseline BL, but its mean AUC is still better). We unfortunately do
not have a clear explanation of why this is the case.

All these conclusions are confirmed in Table 7.7 where the results of both
disconnection strategies (single ranking and ranking updated (100-ranking))
are pooled in order to have an idea of the best method, independently of the
ranking strategy.

It is also interesting to identify the most chosen θ and h parameter values
from Table 7.8. For h, it depends on the task to fulfill but the best h value is
usually small (1 to 4), and for θ it is better to take a value between 1 and 10.
Notice that BPCf still exhibits the best mean rank when its parameter is fixed
(results not presented here; see the discussion at the end of this section).

From Table 7.3, it is clear that WK’s correlation with the other measures
varies a lot depending of the h value. On the other hand, BPC’s and BPCf’s
correlation with the other measures are less dependent of θ. Note that it was
expected that those measures should be highly correlated with RWB and EC
when θ is small and with SPB when θ is large, as the bag-of-paths betweenness
does [145]. However, we observe that this is not the case for a large θ: the
criticality measures BPC and BPCf are still more correlated with RWB when
θ = 10. This suggests that the proposed measures capture different properties
than the bag-of-paths betweenness.

In Figure 7.4, we once more notice that the behavior of WK is strongly
dependent of h. It turns out that with small h, its behavior is similar to KLE
and ALC. When h is larger, the neighborhood is more and more likely to be
close to the whole graph, therefore more and more correlated to EC. As from
Table 7.3, BPC’s and BPCf’s behavior are less sensitive to θ and are close to
RWB, SPB and EC.

From visual inspection of Table 7.4, we can identify different clusters of
measures:
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TA B L E 7 . 8 : Number of times each value of the parameters
is selected during the disconnection strategies described in
Subsection 7.4.2. Note that only WK, BPCf, and BPC need a
parameter tuning. Bold values show the maximum per task

and per measure.

100 AB 100 ER 100 AB 100 ER
Measure Parameter value graphs: graphs: graphs: graphs: Sum over

single single 100 100 the 4 tasks
ranking ranking rankings rankings

WK

h = 1 28 17 71 20 136
h = 2 7 68 4 7 86
h = 3 29 14 9 26 78
h = 4 25 0 7 24 56
h = 5 8 1 2 14 25
h = 6 3 0 7 9 19

BPC

θ = 10−6 16 21 7 18 62
θ = 0.001 6 1 2 4 13
θ = 0.01 17 3 2 1 23
θ = 0.1 24 8 14 13 59
θ = 1 12 52 73 56 193
θ = 10 25 15 2 8 50

BPCf

θ = 10−6 6 24 39 13 82
θ = 0.001 6 0 11 0 17
θ = 0.01 6 1 11 3 21
θ = 0.1 8 2 23 17 50
θ = 1 18 6 13 26 63
θ = 10 56 67 3 41 167

I WIE, KEM, SHV, and EST seem to form a cluster. This is a bit surprising
as these measures are based on different properties of the graph, but still
provide relatively similar results. Indeed, WIE is based on shortest paths,
KEM is based on random walks, SHV is based on an eigenvalue of A
and EST on paths of different lengths.

I SPB, RWB, KIR, EC, BPCf and BPC are part of another cluster. The same
observation can be made: if RWB, BPCf and BPC are based on random
walks, SPB is based on shortest paths and KIR is based on the spectrum
of the Laplacian matrix. Notice that SPB, RWB, KIR, BPCf and BPC tend
to show good performances on Tables 7.5, 7.6 and 7.7.

I KLE and ALC look apart, but are correlated to WK when h is small.

I Finally, notice that the random baseline BL is the last merged measure in
the two cases, which looks natural.

Before closing the discussion, let us comment on the presence of parameters.
At first sight, it seems unfair to compare measures depending on a parameter
(WH, BPC, and BPCf) against measures free of parameter. Recall, however,
that the attacker can adapt its behavior to the network structure, so that a
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F I G U R E 7 . 4 : Mean rank (circles) and critical difference
(plain line) of the Friedman/Nemenyi test, for the 20 real-life
small social networks datasets. The blue method (the fast ver-
sion of our proposed algorithm) has the best mean rank and
is statistically better than red methods. The critical difference

is 4.02.

parameter monitoring the smoothing scale can be considered as an advantage.
Moreover, let us recall two facts about the parameter θ of BPC and BPCf. First,
measures are not very sensitive to the parameter and, second, its optimal value
(according to our experiments) is often close to 1 or 10. Therefore, it seems
that we could also just fix this parameter. By the way, we reproduced the
experiments by setting θ = 1 and it turns out that BPC had still the best mean
rank for three disconnection tasks while the BPCf was the best for the last one
(the single ranking on AB graphs, experiments not reported here).

7.4.5 Application to real-world small social networks

We now consider some experiments on small real-world social networks. The
considered datasets consist in 20 symmetric adjacency matrices, coming from
small social networks, with a minimum of 14 nodes and a maximum of 58.
These data were selected from the well-known UCINET IV repository [26],
and we consider all symmetric datasets, removing antagonistic (negative) net-
works, tree-shaped networks and network with more than two time views.
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Weighted networks were converted to unweighted networks, using aij = 0 if
this entry was equal to zero in the original dataset and aij = 1 otherwise.

Then, the same RBCC analysis, after removing nodes according to the differ-
ent rankings methods, were performed. The results are presented on Figure 7.4
as a Friedman/Nemenyi test (see Appendix A for details). Notice that since
those networks are quite small, and also for clarity, only the single ranking
experiment was performed. For the parameters, θ and k were set to 1 and 2,
respectively.

On this set of networks, the top-7 methods are, in decreasing order: BPCf,
RWB, BPC, SPB, EC, ALC, and WK. Those seven methods are not significantly
different than BPCf, which has the larger mean rank. Note that these results
are quite similar to those reported for the 100 Albert-Barabási’s graphs in Ta-
ble 7.5. Actually the top-3 methods are exactly the same, with a few changes.
KIR performs less well on this small set of social networks compared to AB
generated graphs. The opposite behavior can be observed for ALC. Finally,
WK, SPB and EC are only slightly affected.

Notice that on this set of 20 small social networks and in this configuration,
there is no evidence that the three top methods (RWB, BPC and BPCf) signifi-
cantly outperform EC, which is partly due to the high number of investigated
methods, compared to the number of datasets. We therefore decided to remove
the other methods (EC, SPB, EST, WK, KLE, WIE, KIR, KEM, SHV, and ALC) to
increase the power of the test. Then, both BPC and BPCf become significantly
better than EC.

7.5 Conclusion

This chapter investigated centrality/criticality measures on graphs through a
node disconnection analysis and introduced a new criticality measure based
on a bag-of-paths framework: the bag-of-paths criticality and its fast, approxi-
mate, version.

Comparisons based on node disconnection simulations performed on a
large number of generated graphs show that those two bag-of-paths critical-
ity measures outperform the other considered centrality/criticality measures.
Friedman/Nemenyi tests confirm this fact statistically in most of the cases.
Our results are further confirmed on 20 real-life small social networks.

Of course, the node disconnection analysis is only a proxy to determine if
our criticalities are able to identify critical nodes. Our future work will mainly
focus on testing the proposed measures on other tasks and to consider other
strategies, such as disconnecting groups of nodes instead of one single node at
each time.
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Finally, a simple correlation analysis of those measure allowed to identify
coherent groups, namely the WIE, KEM, SHV, and EST versus the SPB, RWB,
KIR, EC, BPCf and BPC. It was also shown that the choice of the θ parameter
does not impact much the behavior of our two proposed criticality measures.

This study has also some limitations. It would, for instance, be important to
confirm the results on larger, real-world, networks and to adapt the algorithm
in order to scale on large graphs. Moreover, other criticality, vulnerability, and
betweenness measures not considered here should be investigated as well [162,
50].
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Chapter 8

Graph-based fraud detection

Nowadays, e-commerce becomes more and more important for global trade:
sales of goods and services represented more or less 2,000 billion dollars in
2014 and it was estimated that on 7,223 millions peoples on earth, 20 % were
e-shoppers [81]. Part of the reasons of this success is easy online credit card
transactions and cross-border purchases. Furthermore, most organizations,
companies and government agencies have adopted e-commerce to increase
their productivity or efficiency in trading products or services [203].

Of course, e-commerce is used by both legitimate users and fraudsters. The
Association of Certified Fraud Examiners (ACFE) defines fraud as: “the use
of one’s occupation for personal enrichment through the deliberate misuse or
misapplication of the employing organization’s resources or assets” [15].

Global card fraud losses amounted to 16.31 Billion US dollar in 2014 and is
forecast to continue to increase [124]. This huge number of losses has increased
the importance of fraud fighting: in a competitive environment, fraud have
a serious business impact if not managed, and prevention (and repression)
procedures must be undertaken.

As in many domains, profit-motivated fraudsters interact with the affected
business. [193, 19] describes comprehensively this interaction: the fraudster
can be internal or external to the business, can either commit fraud as a cus-
tomer (consumer) or as a supplier (provider), and has different basic profiles.
From this description, it comes out that professional fraudsters’ (as opposed
to occasional ones) modus operandi changes over time. Therefore, fraud de-
tection system algorithms should also adapt themselve to new behaviors. This
is refered as concept drift: the constant change in fraudsters behavior.

For those reasons e-commerce and credit card issuers need automated sys-
tems that identify incoming fraudulent transactions or transactions that do not
correspond to a normal behavior. Data mining and machine learning offer
various techniques to find patterns in data; here, the goal is to discriminate
between genuine and fraudulent transactions. Such Fraud Detection Systems
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(FDS) exist and are similar to detection approaches in Intrusion Detection Sys-
tem (IDS). FDS use misuse and anomaly based approaches to detect fraud [86].

However, there are issues and challenges that hinder the development of
an ideal FDS for e-commerce system [72]; such as,

I Concept drift: fraudsters conceive new fraudulent ways/methods over
time. Furthermore, normal behavior also varies with time (consumption
peak at Christmas for instance).

I Six-seconds rule [241]: acceptance check must be processed quickly as
the algorithm must decide within six seconds if a transaction can be
pursued.

I Large amount of data: millions of transactions occur per day whereas
have to be analyzed and acceptance must be granted in seconds.

I Unbalanced data: frauds represents (hopefully) only less than 1% of
transactions but predicting a pattern is harder with unbalanced datasets.

The presence of those challenges leads to high false alert rate, low detection
accuracy or slow detection (see [1] for more details). There are many fraud
detection domains but internet e-commerce presents a challenging data mining
task because it blurs the boundaries between fraud detection systems and
network intrusion detection systems.

This work focuses on automatically detecting e-commerce fraudulent trans-
actions using network (or graph) related features. e-commerce refers to a goods
(or services) exchange through a computer network, often internet. It contrasts
to face-to-face transactions, where the buyer and merchant physically meet
each other. Furthermore, for a payment, two points of view are possible, since
two actors intervene [195]:

I Issuing: The issuer (cardholder’s bank) confirms the account holder iden-
tity, check PIN and verifies that the account balance is sufficient, and then
authorizes the transaction.

I Acquiring: The acquirer (merchant’s bank) checks that the merchant
account exists and send an acceptance agreements.

In this chapter, the data we are working on are issuing data. They are therefore
encoded from the issuer point of view. More details can be found on Table 8.1
(p. 132).

Figure 8.1 [195] describes the five main steps of a real-world FDS for each
new transaction. This description is strongly inspired from [195]. These steps
can be summarized as follows :
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F I G U R E 8 . 1 : A scheme illustrating the layers of control in a
FDS. From [195], reproduced with permission.

I Terminal: As a first step, the terminal queries a server of the card issuing
company and controls the PIN code, the number of attempts, the card
status (either active or blocked), the balance available and the expendi-
ture limit. For online transactions, these controls have to be executed in
real time (response in a few milliseconds). The transaction can be denied
at this step; if not, the transaction proceeds to transaction-blocking rules.

I Transaction-blocking rules: Transaction-blocking rules are a collection
of if/then/else statements on the available information when the pay-
ment is requested (i.e. without analyzing historical records or cardholder
profile). Transactions firing any of these rules are blocked. Transaction-
blocking rules are expert-driven: they are manually designed by inves-
tigators with two constrains: quick to compute (in real-time) and very
precise (very few false alarms). All transactions passing blocking rules
are authorized. Data are stacked in a feature vector and new, aggregated,
features are added (for example, the average number of transaction per
day). The following steps are then computed on this new feature set.

I Scoring rules: Scoring rules are another set of expert-driven models that
are expressed as if/then/else statements. However, these operate on
feature vectors and assign a score to each authorized transaction: the
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larger the score, the more likely the transaction to be a fraud. Scoring
rules can detect only simple fraudulent strategies that have already been
discovered by investigators.

I Data driven model: This steps is not expert-driven and is purely data
driven. It is based on classifiers or another statistical models to estimate
the probability for each feature vector being a fraud. It is expected to find
frauds according to rules that go beyond investigator experience, and
that do not necessarily correspond to interpretable rules. Transactions
associated with feature vectors that have either received a large fraud
score or an high probability of being a fraud, generate alerts. A limited
number of alerted transactions are finally reported to investigators.

I Investigators: Investigators are human professionals which are in charge
of the expert-driven steps. Investigators also call cardholders and, after
verification, assign the label “genuine” or “fraudulent” to the alerted
transaction, and return this information as feedbacks to the FDS.

Any card that is found victim of a fraud is immediately blocked, to pre-
vent further fraudulent activities. Typically, investigators check all the
recent transactions from a compromised card, which means that each
detected fraud can potentially generate more than one feedback. In a
real-world FDS, investigators can only check few alerts per day as this
process can be long and tedious. Therefore, the primary goal of the data
driven step is to return precise alerts, as investigators might ignore fur-
ther alerts when too many false alarms are reported.

Our work is based on a recent paper [241] which introduced an automated
and field-oriented approach to detect fraudulent patterns in credit card trans-
actions by applying supervised data mining techniques. More precisely, this
algorithm uses a collective inference algorithm to spread fraudulent influence
through a network by using a limited set of confirmed fraudulent transactions
and takes a decision based on risk scores of suspiciousness of transactions,
card holder, and merchants. A toy example can be found on Figure 8.2.

In this chapter, several improvements from graph literature and semi-
supervised learning are proposed. The resulting fraud detection method is
tested on a three-months real-life e-commerce credit card transaction data set
obtained from a large credit card issuer in Belgium.

The following questions are addressed:

1. Can we enhance graph-based existing FDS in terms of performance?

2. How can we make graph-based FDS as suitable for real applications as
possible?

126



Chapter 8. Graph-based fraud detection

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.06

0.02

0.16

0.63

0.25

0.16

0.63

0.33

F I G U R E 8 . 2 : A small toy graph. Left sub-figure shows five
transactions (in blue) between three card holders (in green)
and three merchants (in red). Two transactions are known to
be frauds (risk score of 1.00). Right sub-figure is obtained after
a random walk with restart process. A merchant (risk score
of 0.33) is clearly potentialy more fraudulent than the others.
Those risk scores are then used as features in a classifier. For

this example α was set to 0.5.

3. Is semi-supervised learning [58] or feedback [72] useful for this graph-
based FDS?

Our approach takes into account various field/ground realities such as the
six-second rule, concept drift, dealing with large datasets and unbalanced data.
It also has been conceived in accordance with field experts to guarantee its
applicability.

The rest of this chapter is divided as follows: Section 8.1 reviews related
work. Section 8.2 details the proposed contributions. Experimental compar-
isons are presented in Section 8.3 and analyzed in Section 8.4. Finally, Sec-
tion 8.5 concludes this chapter.

8.1 Related work

Credit-card Fraud detection received a lot of attention, but the number of publi-
cations available is limited. Indeed, credit card issuers protect data sources and
most algorithms are produced in-house, concealing the model’s details [241].

As for any machine learning modeling process, two main approaches can
be used: a supervised and an unsupervised scheme (see Chapter 3). Super-
vised learning uses labels (the observed prediction of an instance, here the
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fraud tag) to build the classification model, where unsupervised simply ex-
tracts clusters of similar data that are then processed. Common unsupervised
techniques are peer group analysis [253] and self-organizing maps [259] while
common supervised techniques are logistic regression, artificial neural net-
works (ANN), random forests, meta-learning, case-based reasoning, Bayesian
belief networks, decision trees, hidden Markov models, association rules, sup-
port vector machines,. . . The reader is advised to consult [71] for more detail
about credit card fraud detection, and [193] for a wider review on fraud detec-
tion.

In [72], the authors address a realistic fraud-detection setting with investi-
gator’s feedbacks and delayed labels. We therefore used these characteristics to
define our realistic scenario for fraud detection. We were also inspired by [71]
and [70].

[20] propose a measure that realistically represents the monetary gains
and losses due to fraud detection. Moreover, In [21], the authors propose an
example-dependent cost matrix for credit scoring. This example-dependent
cost is then developed for several models (naive Bayes model, logistic regres-
sion,...).

In [22] and [70] the authors create new sets of features using various trans-
action aggregation strategies. We did not consider this option as the main goal
of this work is to study the usage of graphs for fraud detection. Neverthe-
less, both approaches (transaction aggregation and graph-based) can easily be
combined by concatenating the new obtained features.

According to [241], APATE was the only one to include network knowledge
in the prediction models for fraud detection at that time: This model first builds
a tripartite graph (see below) and then extracts relevant risk scores for each
node. [241] shows that this information, added to more conventional ones,
increases the performances of the fraud detection system.

In this work, we follow the methodology of APATE [241] (which is de-
scribed in this section for clarity), and propose several improvements in the
next section. In [52], transactions between cards and shops are represented as
a bipartite graph. This approach finds fully connected subgraphs containing
mostly compromised cards, because such bicliques reveal suspicious payment
patterns. It then defines new features capturing transaction suspiciousness
from those suspicious payment patterns. Other types of graph were also inves-
tigated but they did not provide better results and are therefore not presented
here.

In particular, APATE starts with a set of time stamped, labeled, transac-
tions. The goal is, of course, to fit a model to infer future fraudulent/genuine
transactions. Furthermore, for each transaction of this dataset, the card holder
(or user) and merchant (or retailer) is known. APATE thus creates a tripartite
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adjacency matrix Atri (there are three type of node: transactions, card users,
and merchants) as follows:

Atri =

 0t×t At×c At×m
Ac×t 0c×c 0c×m
Am×t 0m×c 0m×m

 (8.1)

where At×c = (Ac×t)
T is an adjacency matrix where transactions are linked

with their corresponding card holders, At×m = (Am×t)
T is an adjacency ma-

trix where transactions are linked with corresponding merchants and 0···×··· is
a correctly sized matrix full of zeros. From Atri, the transition matrix P can be
derived by defining a random walk on the tripartite graph (see Section 2.4).

This tripartite graph exhibits another interesting behaviors: it follows the
scale-free rule. The degree distribution of such a network follows a power
law P (k) ∼ k−γ , where P (k) is the probability that a vertex in the network
is linked to k other vertices [24]. This kind of network is often observed in
natural and human-generated systems, including the world wide web, citation
networks, and social networks, with γ between two and three. It is closely
related to Albert-Barabási’s graphs (see Section 2.8.1). Figure 8.3 shows the
distribution P (k) for one of the tripartite graphs used in Section 8.3, with a γ
slightly lower than three. Notice that nodes with a degree of two deviate from
the curve: by construction, transaction nodes are constrained to have such a
degree (one merchant and one card holder per transaction).

A column vector risk(0) = [vecTrx
0 ; vecCH

0 ; vecMer
0 ] of length equal to the

total number of transactions (hence the superscript Trx), card holders (CH) and
merchants (Mer) is also created and initialized. risk(t) is the risk vector after
t iteration. Vector vecTrx

0 is initially full of zeros, except for known fraudulent
transactions where it is equal to one (at least at iteration 0, indicated by the
corresponding subscript), and vecCH

0 and vecMer
0 are column vector full of zeros.

Finally, element k of a vector risk(0) is noted [risk(0)]k.
Then, in a convergence procedure similar to the PageRank algorithm [187],

risk(t) is updated to spread the fraud label through the tripartite graph. This
is known as a random walk with restart procedure (RWWR) [141]:

risk(t) = α ·PTrisk(t− 1) + (1− α) · risk(0) (8.2)

where risk(t) is the risk vector after t iteration, α is the probability to continue
the walk and (1 − α) is the probability to restart the walk from a fraudulent
transaction. This parameter could be tuned, but was fixed to 0.85 in the experi-
mental comparisons (see [187]). The procedure diffuses the information about
the transactions through the network.

Eq. 8.2 is iterated until convergence. Then, from risk(tc) (where tc stands
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F I G U R E 8 . 3 : The distribution P (k) for one of the scale-free
tripartite graph used in Section 8.3. γ is slightly lower than

three. We use logarithmic scales.

for t at convergence) vecTrx
tc , vecCH

tc and vecMer
tc can be extracted and consid-

ered as a risk measure (at convergence) for each transaction, card holder, and
merchant respectively.

As fraud detection models should adapt dynamically to a changing envi-
ronment, this procedure is repeated several times, introducing a time decay
factor. Intuitively, we want that old transactions matter less than recent one.
Each non-zero entry of Atri and risk(0) is modified to characterize transactions
based on current and normal customer’s past behavior (see [241] for more de-
tails): {

[Atri]ij ← e−γ·t([A
tri]ij) or 0 if no relation

[risk(0)]k ← e−γ·t([risk(0)]k) or 0 if no fraud
(8.3)

where t(·) (a time function, not to be confused with t, the iteration number of
Equation (8.2)) is the (scalar) time where transaction between i and j in matrix
Atri occurred (or k for vector risk(0)), and γ (the exponential decay constant)
is a scalar set in such a way that the exponential equals 0.5 after: one day, one
week and one month. For instance, if a transaction occured two weeks ago,
the corresponding element of Atri with week decay is equal to 1/(22) and is
1/(214) with day decay.

Therefore, for each transaction of our starting dataset, we have 12 new
features: The risk score for transaction, card holder, and merchant, each for
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four (no decay, day decay, week decay, and month decay) time windows.
However, this procedure cannot be computed in less than a few minutes,

which is not suitable with the six-seconds rule. Convergence on a graph with
millions of nodes is expensive and is therefore daily re-estimated over night.
Transactions appearing during the testing day are evaluated using the model
trained on previous night. For card holders and merchants, the graph-based
feature values are extracted (looked up) from already the trained model, since
they are likely to be part of the previous data.

Naturally, for the new transaction not part of the model, transaction-based
risk score have to be estimated, which is done through the formula [241]:

sc(Trxji,k) =
1

n∑
j=1

pji + 1

sc(Meri) +
1

m∑
j=1

pjk + 1

sc(CHk) (8.4)

where sc(Trxi,k) stands for the new transaction risk score between merchant
i and card holder k, sc(Meri) stands for the score of merchant i and sc(CHk)
stands for the score of card holder k. It represents the score of a new transaction
j after one new iteration of Eq. 8.2.

Equation (8.4) is obtained as follows: Recall that risk(tc) is the vector ob-
tained after convergence of Equation (8.2). Then we rewrite Equation (8.2)
considering that we run a single new iteration after convergence. [risk(t+ 1)]j
is then used as sc(Trxji,k) [241]:

risk(tc+ 1) = α ·PTrisk(tc) + (1− α) · risk(0) (8.5)

If a new transaction Trxji,k (we introduce an new node j) between merchant
i and card holder k occurs, matrices Atri and PT should be extended with a
new row and a new column (considering new edges aij = aji = aik = aki = 1,
since the transaction just occurs). risk(tc) and risk(0) should also be extended
by a new row, and this new jth score value is unknown at this point for both
risk(tc) and risk(0). We can assume any value for [risk(tc)]j : its value needs
two step to influence [risk(t+ 1)]j and we limit ourself to only one step. As we
have no clue for [risk(0)]j when receiving the transaction (it was not present in
the train set), we replace it by [risk(t+ 1)]j , the updated value we are looking
for.
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TA B L E 8 . 1 : Features used by the random forest classifier.
The first group contains demographical features and the sec-
ond group are graph-based features. Notice that each trans-
action is linked with a card holder and with a merchant at a
certain date: this information is only used to build the tripar-

tite graph.

Variable name Description
inBEL/EURO/OTH Issuing region: Belgium/Europa/World
TX AMOUNT Amount of transaction
TX 3D SECURE Transaction used 3D secure
AGE Age of card holder
langNED/FRE/OTH Card holder language: Dutch/French/Other
isMAL/FEM Card holder is Male/Female
isFoM Card holder gender unknown
BROKER Code of card provider
cardMCD/VIS/OTH Card is a Mastercard/Visa/Other
01 Mer score Merchant risk score (no time damping)
ST/MT/LT Mer score Day/week/month decay merchant risk score (3 features)
01 CH score Card Holder risk score (no time damping)
ST/MT/LT CH score Day/week/month decay Card Holder risk score (3 features)
01 Trx score Transaction risk score (no time damping)
ST/MT/LT Trx score Day/week/month decay Transaction risk score (3 features)
TX FRAUD Target variable: Fraud/Guenuine

For the particular node Trxji,k, Equation (8.5) then writes:

sc(Trxji,k) = α

 1
n∑
j=1

pji + 1

sc(Meri) +
1

m∑
j=1

pjk + 1

sc(CHk)

+(1−α)sc(Trxji,k)

(8.6)
which leads to Equation (8.5) when α disappears. Notice that if a new trans-
action involves a new merchant and/or card holder, sc(Meri) and/or sc(CHk)
are also unkown. When this occurs, sc(Meri) and/or sc(CHk) are set to zero
accordingly.

Finally, those 12 new features (plus transaction-related features, see Ta-
ble 8.1) are fed into a random forest classification model, as this model proved
to perform well for the problem at hand, predicting fraudulent transaction [37,
71].

8.2 The Proposed Model

While showing good performance, APATE can be improved in various ways.
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8.2.1 Dealing with hubs

From the literature, it is known that presence of hubs in a network can harm
the classifiers [198, 199, 114]: hubs are nodes having a high degree and are
therefore neighbors of a large number of nodes. In our dataset, it corresponds
to popular nodes such as popular online shops like Amazon (as an example,
the dataset is anonymised). Those nodes tend to accumulate a high value
of risk score since they are connected to a lot of transactions. A simple way
to counterbalance this accumulation is to divide the risk score by the node
degree after convergence. In general, it is possible to divide by any power of
the node degree and/or by different powers for the three types of nodes of
the tripartite graph (transactions, card holders, and merchants). In practice
however, we did not find any combination that significantly beats the simple
divide-by-node-degree option (results are not reported here).

Furthermore, it allows us to make a link with the regularized commute
time kernel which is KRCT = (D − αA)−1 (where D is the degree matrix)
: element i, j of this kernel can be interpreted as the discounted cumulated
probability of visiting node j when starting from node i (see [265, 91, 168]
for details). The (scalar) parameter α ∈ ]0, 1] corresponds to an evaporating
or killed random walk where the random walker has a (1− α) probability of
disappearing at each step (therefore it has a similar interpretation as for the
RWWR used in APATE, see Section 8.1). It can be shown that it corresponds
to the score obtained by a random walk with restart divided by the degree of
the nodes, for undirected graphs [90]. This method provided the best results
in a recent comparative study on semi-supervised classification [91] and the
second best results in the Chapter 5 of this thesis. In practice, the efficient
implementation proposed in [168], Equation (22), for semi-supervised classi-
fication with the Regularized Commute Time Kernel is used and referred as
RCTK.

Equation (8.5) must be divided by two when using the RCTK, as the sum
of degree is two for a new transaction (one new edge to the merchant and one
new edge to the card holder, by construction).

8.2.2 Introducing a time gap

On the other hand, unlike in [241], the model cannot be based on past few days.
Indeed, fraudulent transaction tags (the variable we want to predict) cannot be
known with certainty without the human investigators feedback. Moreover,
since the fraudsters’ modus operandi is known to change over time, it is not
acceptable to built our model on old, less reliable (but fully inspected) data.
However, it takes several days to inspect all transactions, mainly because it
is sometime the card holders that report undetected frauds. Of course, this
makes our fraud detection problem harder [70].
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τ − 22 τ − 7 τ

1 day

T R A I N I N G S E T
G A P S E T

T E S T S E T

T I M E

F I G U R E 8 . 4 : Real-life FDS scenario with three sets of data. It
takes several days to inspect all transactions, mainly because
it is sometime the card holder who reports undetected frauds.
Hence, in practice, the fraud tags of the Gap set are unknown.
This scenario is repeated each day, as the parameter τ is incre-

mented.

In arrangement with field experts, we designed a real-life scenario contain-
ing three sets of data:

1. Training set: data where the transaction fraud labels can be taken as
reliable.

2. Gap set: data where the transaction fraud labels are unknown.

3. Test set: data of the day on which the algorithm is currently tested.

It corresponds therefore to a semi-supervised learning scheme (SSL, see Chap-
ter 3), as training data are partially labeled. If the Gap set is totally left aside,
this is an usual supervised learning (SL) problem again. Both cases (SL and
SSL) were investigated:

I For the SL scheme, only the training set is used to build the graph, and
only the Training set is used to train the random forest.

I For the SSL scheme, the training set and the gap set are used to build the
graph, and only the Training is used to train the random forest classifier.

Once again, in arrangement with field experts, 15 days of training data and
seven days for the gap set were chosen [44, 72]. This scenario is depicted on
Fig. 8.4. Notice that on this figure, τ controls the testing day and that models
are systematically built (overnight) on the 22 previous days. By changing τ ,
we get different testing days.

8.2.3 Including investigators feedback

Remember from the introduction that a fraction of previous alerts have been
confirmed or overturned by human investigators (typically when a fraud alert
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occurs, the card is blocked and the card holder is contacted by phone). In our
case, we put this number of feedbacks per day to 100, in arrangement with
field experts. It is a realistic average number of cards that human investiga-
tors can check per day, usually by contacting the card holder. It means that,
each day, the 100 most probable fraudulent cards (according to the model) are
checked and then used as feedback. Therefore, in each of our gap set (except
in starting conditions) 100 cards per gap set day have been checked by human
investigators. We will take advantage of these investigated cases in order to
try to predict more accurately the fraudulent transactions. On average, it corre-
sponds roughly to 1400 transaction feedbacks (two transactions per card) from
previous testing day (previous τ ’s of our model). This option will be referred
as +FB and only makes sense in a SSL scheme.

8.2.4 Minors improvements

This variant brings small numeric (as opposed to theoretical) improvements.
First it uses priors for missing merchant and card holder scores instead of zero
in Equation (8.4). The prior is computed from previous day.

We also balance Equation (8.1) by introducing a balance factor P (a positive
scalar), because nothing ensures that transaction-merchant and transaction-
card holder edges should be equally weighted:

Atri =

 0t×t At×c PAt×m
Ac×t 0c×c 0c×m

PAm×t 0m×c 0m×m

 (8.7)

This variant was only applied to the best model, namely RCTK SSL +FB
see 8.4, and is refered as RCTK SSL +FB P=32, as the best tested value for the
parameter P is 32. A plot aiming to optimize this parameter can be found on
Figure 8.5.

8.3 Experimental comparisons

In this section, the possible variants of the considered algorithms are com-
pared on a real-life e-commerce credit card transaction data set obtained from
a large credit card issuer in Belgium. Those graph-based algorithms compute
additional features and were presented in Section 8.1 and 8.2. For practical
purposes, considered algorithms are recalled in Table 8.2 and the classifier is al-
ways a random forest with 400 trees. Random forest is an ensemble of decision
trees (also called bagging), where each tree is trained on different bootstrap
sample of the original training set and uses a random features subset [70]. The
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F I G U R E 8 . 5 : This plot aims optimizing the balance between
transaction-merchant and transaction-card holder edges. The
x-axis is logarithmic (base 2). The best balance factor is 32 for

both card-based and transaction-based Pr@100.

bootstrap sampling also allows to reweigh the two classes, enhancing the pre-
dictions in the case of unbalanced dataset. Diversity in the generated trees is a
key factor for good performance with unbalanced data.

The database is composed of 25,445,744 transactions divided in 139 days
and fraud ratio is 0.31%. The features list can be found in Table 8.1. From this
table, the first group contains mostly socio-demographic features which are
taken as-is. The second group contains the graph-based features described in
Section 8.1 and 8.2. Notice that each transaction is linked with a card holder
and with a merchant at a certain date. Those three pieces of information (card
holder, merchant, and date) are used to build the tripartite graph. Finally,
this database does not focus on a certain type of card fraud (stolen, card-not-
present,...) but contains all reported fraudulent transactions in this time period.

As a performance indicator, Precision@100 (Pr@100) [232] was chosen, in ac-
cordance with field experts. It means that the 100 most probable (according to
models) fraudulent transactions are checked by human investigators each day
(and added as feedback in RWWR SSL +FB and RCTK w/ SSL +FB). Similarly
all most probable fraudulent transactions are considered until 100 cards have
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TA B L E 8 . 2 : Result obtained by the eigth compared models,
see Sections 8.1 and 8.2 for acronyms. Considered variations
of the APATE Algorithm are tested according to four dimen-
sions: hubs status, learning scheme, feedback status and mi-
nor improvements. Precision@100 (see Section 8.3) both for
fraudulent card and transaction predictions is also reported
(formatted mean ± std). Original features is the baseline with

no additional graph features used.

Classifier name Risk scores Damp hubs Learning Feedback Card Pr@100 Trx Pr@100
Original features not used no Supervised no 2.38 ± 2.16 3.91 ± 5.54
RWWR SL = APATE used no Supervised no 18.05 ± 9.34 35.16 ± 19.07
RWWR SSL used no Semi-supervised no 14.67 ± 6.92 28.58 ± 14.32
RWWR SSL +FB used no Semi-supervised yes 17.14 ± 8.40 33.28 ± 15.41
RCTK SL used yes Supervised no 20.54 ± 10.54 40.37 ± 20.92
RCTK SSL used yes Semi-supervised no 19.81 ± 8.67 37.59 ± 16.81
RCTK SSL +FB used yes Semi-supervised yes 23.79 ± 9.63 46.28 ± 17.03
RCTK SSL +FB P=32 used yes Semi-supervised yes 25.09 ± 9.99 47.54 ± 17.26

0 1 2 3 4 5 6 7 8

6 groups have mean column ranks significantly different from RCTK SSL +FB P=32

RCTK SSL +FB P=32

RCTK SSL +FB

RCTK SSL

RCTK SL

RWWR SSL +FB

RWWR SSL

RWWR SL

Original features

Friedman/Nemenyi test for Cards Prec@100

F I G U R E 8 . 6 : Mean rank (circles) and critical difference
(plain line) of the Friedman/Nemenyi test, obtained on a
three-months real-life e-commerce credit card transaction data
set. The blue method has the best mean rank and is signifi-
cantly better than red methods. Critical difference is 0.99. Per-

formance metric is Pr@100 on fraudulent card prediction.

been checked as usually human investigators verify all transactions of a card
when they investigate. Precision@100 reports the number of true fraudulent
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RCTK SSL +FB
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RWWR SSL +FB

RWWR SSL

RWWR SL

Original features

Friedman/Nemenyi test for Trx Prec@100

F I G U R E 8 . 7 : Friedman/Nemenyi test, obtained on a three-
months real-life e-commerce credit card transaction data set.
Here, performance metric is Pr@100 on transaction prediction.

See Figure 8.6 for details.

transactions or cards among 100 investigated. Notice that card-based preci-
sion is more realistic as it is somehow the normal work charge for a human
investigators team.

Notice that the data set is build a posteriori, it is therefore possible that a
fraud in the test set was previously identified in the train set. In that case, the
card would have been blocked at that time, and the transaction in the test set
should therefore never occur. In order to suppress this effect, we did not took
into account those cases in the computation of Pr@100.

8.4 Results and discussion

Figure 8.6 and 8.7 compare methods described on Table 8.2 through a Fried-
man/Nemenyi test [74] for cards-based Pr@100 and transactions-based Pr@100,
respectively (see Appendix A for a description). To that end, we adopt a slid-
ing window approach: each day (different τ from Fig 8.4) is considered as a
different (train-gap-test) dataset. Friedman null hypothesis is rejected with
α = 0.05 and Nemenyi critical difference is equal to 0.99. A method is consid-
ered as significantly better than another if its mean rank is larger by more than
this amount.
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F I G U R E 8 . 8 : Variables selected by the random forests for
the RCTK SSL +FB model for all days. Our risk features are

the most selected features.

Firstly, RCTK always beats RWWR. This superiority indicates that tackling
the hubs problem is actually important, as the difference is significant (see
Table 8.2). Secondly, SSL (opposed to SL) does not lead to an improvement,
but it allows to use the feedback. Thirdly, adding the feedback +FB significantly
enhances the performance for RCTK, but not for RWWR. Intuitively, the effect
of feedback should always be positive. In practice, however, a certain number
of feedbacks is required to improve the performance. This number can be
higher than the realistic number of feedback that we allow per day.

Overall, the best combination is RCTK SSL +FB P=32, reaching 25% Pr@100
for fraudulent card detection and nearly 50% in terms of fraudulent transaction.
From the original APATE algorithms, we therefore increased the Pr@100 for
fraudulent card detection by 39%.

It can be observed that classification based only on the original features pro-
vides poor performance. Nevertheless, this does not mean that those features
are information-less. Indeed, [70] and [22] used feature engineering to obtain
interesting results (from the same data set in the case of [70]).

Figure 8.8 indicates the frequency of selected features by the random for-
est classifier. The method is RCTK SSL +FB and selects merchant risk scores
most often. Then comes the transaction and card user risk scores, followed by
features from the original feature set.

Finally, we conclude this section by a time complexity analysis.
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F I G U R E 8 . 9 : Required time to build the tripartite graph and
extract the 12 risk scores. The corresponding complexity is

O(n) with n the number of nodes or transactions.

8.4.1 Time complexity

One of our main objectives through this chapter was to design a scalable fraud
detection system. We therefore restrict ourselves to light sparse operations.
Apart from the classifier itself, the bottleneck is a matrix-vector sparse multi-
plication (see Equation (8.2)).

The corresponding time-complexity is O(nTrx) in our case with nTrx being
the number of nodes or transactions. Indeed, the total number of node (of three
types) and the number of transactions are linearly related. Experimentally, the
time required to build the tripartite graph and extract the 12 risk scores versus
both transactions and total number of node almost follow a regression line.
This relation is reported for time versus transactions on Figure 8.9. Finally, the
space complexity is also O(nTrx).

8.5 Conclusion

In this chapter, we start from an existing fraud detection systems (FDS) APATE
and bring several improvements which have a large impact on performances:

We first damp the hurtful effect of hub nodes, using the regularized com-
mute time kernel (RCTK). We then take into account real-life constrains such
as the Gap set (introducing semi-supervised learning learning, SSL) and using
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Pr@100 as a metric. Feedback information from human investigators is also
introduced (+FB).

The resulting fraud detection system (FDS) is tested on a three-months real-
life e-commerce credit card transactions data set obtained from a large credit
card issuer in Belgium. Our extensions improve significantly the Pr@100, both
on fraudulent cards or transactions prediction (for acronyms, see Section 8.2).

The scalability of this method is also demonstrated, as the time-complexity
to extract the risk scores is O(n). It allows to tackles millions of transactions in
minutes on a standard laptop.

An envisaged further work is to introduce semi-supervised learning not
only at the level of graph analysis but also for the main classifier.
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Chapter 9

Constrained randomized
shortest path problems

The present chapter aims to study randomized shortest path problems with
equality constraints on the transition probabilities from a subset of nodes, in
the context of a single source and a single destination. This allows to set a priori
some transition probabilities and then finding the optimal policy compatible
with these probabilities. As shown in Section 9.2, the randomized shortest path
framework is really close to the bag-of-paths framework.

It therefore extends previous work dedicated to randomized shortest paths
(RSP, [208, 257, 144]), and initially inspired by stochastic traffic assignment
studied in transportation science [7]. The model can be described informally as
follows. Suppose we have to find the optimal policy, minimizing expected cost
for reaching a destination node from a source node in a network, where costs
are associated to local decisions/actions. Usually, deterministic and stochastic
shortest path algorithms provide pure deterministic policies: when standing
in a given state k, we just choose the best action u leading to the minimal
expected cost.

In the present work, we investigate the possibility of optimally randomiz-
ing the policy while fixing a subset of transition probabilities: the agents can
choose several actions, according to some probability distribution. Randomiz-
ing the policy thus introduces a continual exploration of the network. As in
the standard RSP framework, the degree of randomness can be controlled by a
temperature parameter allowing to interpolate between the least-cost solution
given by the optimal shortest path algorithm and a random behavior provided
by a predefined, reference, random policy.

In practice, randomization corresponds to the association of a probability
distribution on the set of admissible actions in each node ([208], choice ran-
domization or mixed strategy). If no randomization is present, only the best
policy is exploited. Randomization appears when this probability distribution
is no more peaked on the best choice: the agent is willing to sacrifice efficiency
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for exploration. Note that randomized choices are common in a variety of
fields [208]; for instance game theory (mixed strategies; see for instance [186]),
computer sciences [178], Markov games [160], decision sciences [200], . . .

A comprehensive related work and a detailed discussion of the reasons for
randomizing the policy can be found in [208], and is summarized here:

I If the environment is changing over time (non-stationary), the system
could benefit from randomization by performing continual exploration.

I It is sometimes of interest to explore the environment, such as in rein-
forcement learning.

I A deterministic policy would lead to a totally predictable behavior; on
the contrary, randomness introduces unpredictability and therefore ren-
ders interception more difficult. Randomization (mixed strategies) has
proven useful for exactly this reason in game theory.

I A randomized policy spreads the traffic over multiple paths, therefore
reducing the danger of congestion.

I In some applications, like in social networks analysis, computing a dis-
tance accounting for all paths – and thus integrating the concept of high
connectivity – could provide better results than relying on the optimal,
shortest, paths only.

I In computer gaming, it is often desirable to be able to adapt the strength
of the digital opponent, which can easily be done with the introduced
model.

In this context, the randomness associated to paths connecting the initial
node and the goal node is quantified by the relative entropy, or Kullback-
Leibler divergence (see, e.g., [67]), between the probability distribution on the
paths and their likelihood according to a reference random walk on the graph,
usually a uniform distribution on the set of available actions. This relative
entropy captures the degree of randomness of the system.

The optimal, randomized, policy (assigning a probability distribution on
the set of actions available on each state) is then obtained by minimizing the
free energy (the expected cost plus the Kullback-Leibler divergence), subject
to some equality constraints on the transition probabilities provided by the
environment – the probabilities of jumping to a given state after having chosen
an action – which have to be verified exactly. Based on this formalism, a
first, generic, algorithm for solving constrained randomized shortest paths
problems is developed by exploiting Lagrange duality.

Then, as an application example, this framework is used in order to
solve Markov decision problems for providing mixed, randomized, policies.
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Markov decision problems [194, 197, 224, 225, 235], also called stochastic
shortest path problems [33, 34], are currently used in a wide range of appli-
cation areas including transportation networks, medical imaging, wide-area
network routing, artificial intelligence, to name a few (see, e.g., [197, 224, 254,
255, 256]).

A simple, easy-to-implement, soft value iteration algorithm solving the
problem is derived and its convergence to a fixed point is proved. Interest-
ingly, this “soft” value iteration algorithm is closely related to dynamic policy
programming [18] as well as Kullback-Leibler and path integral control [237,
207, 137, 234, 233], and similar to the exploration strategy recently introduced
in [13, 14].

This therefore shows that the recently proposed exploration strategy in [13,
14], developed in parallel to this work, is globally optimal in our setting in the
following sense: it minimizes expected cost subject to constant relative entropy
of paths probabilities when the goal state is absorbing and reachable from any
other state. Interestingly, as in [95, 94], the softmax value iteration algorithm
extends the Bellman-Ford value iteration algorithm by simply replacing the
minimum operator by a soft minimum operator.

Note that still another way of solving the problem was developed in [31],
but this algorithm is not included here because it is less generic. For a compre-
hensive related work about randomized policies, see [208, 3].

In brief, this work has four contribution:

I It extends randomized shortest paths to problems with constrained tran-
sition probabilities on a subset of nodes.

I The constrained randomized shortest paths framework is applied to stan-
dard Markov decision problems in order to provide optimal randomized
policies.

I A simple, easy-to-implement, soft value iteration algorithm is derived
for obtaining optimal randomized policies.

I Simulations on concrete problems show that the algorithms behave as
expected.

This chapter is organized as follows: Before going further, we start with a
small toy example in Section 9.1. Then, Section 9.2 introduces the randomized
shortest paths framework. Section 9.3 considers randomized shortest path
problems with constraints on transition probabilities. In Section 9.4, the stan-
dard Markov decision problem is recast as a constrained randomized shortest
path problem on a bipartite graph and an algorithm is proposed for solving
it. Moreover a simple more efficient soft value iteration algorithm is also de-
veloped. Section 9.5 shows some simulation examples and Section 9.6 is the
conclusion.
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9.1 Constrained randomized shortest path example

Let us consider a car driver leaving his house and going to his workplace. His
GPS can guide him using the shortest path between those two places.

Tired of wasting his time in traffic jams, or because he wants to explore
his city a bit further, he decides to drive his way using a non-deterministic
policy. At each crossroad, he can choose to go left, to go right, or to continue
ahead (each crossroad having its specificity that can be random because of
traffic lights, detour roads and traffic cops). He will never take highways, so
that the number of crossroads in his neighborhood is finite.

The idea behind the constrained randomized shortest path is to add more
and more randomization (using the temperature parameter) in a path between
some fixed start and end points. In our example (and in Markov decision pro-
cesses, as we will see), a part of transitions are constrained by the environment
(here, each crossroad leads to somewhere else), and others are unconstrained
(here, the driver can choose to go left, right or ahead).

The randomization will therefore occur on unconstrained choices, and,
once the targeted level of randomness is reached, those choices (here, the se-
quence of left, right or ahead) will be used as the optimized, randomized,
policy.

9.2 The randomized shortest path framework

Our formulation of the problem is based on the randomized shortest path
(RSP) framework (see Section 9.2). It defines a dissimilarity measure interpo-
lating between the shortest path distance and the commute-time distance in a
graph [257, 208, 144]. This formalism is based on full paths instead of standard
“local” flows [6].

We start by providing the necessary background and notation in Sec-
tion 9.2.1. Then, we proceed with a short summary of the randomized shortest
path formalism in Section 9.2.2, before introducing, in Section 9.3, randomized
shortest paths with constraints on the transition probabilities.

9.2.1 Some background and notation

We consider a weighted directed graph or network, G, with a set of n nodes
V (or vertices) and a set of arcs E (or edges). The graph is represented by its
n× n adjacency matrix A containing binary values if the graph is unweighted
or non-negative affinities between nodes in the case of a weighted graph. To
each edge linking node i to node j, we also associate a non-negative number
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cij representing the immediate cost of following this edge. The costs should
be non-negative and are gathered in matrix C.

Let us also recall the reference random walk on G, which was defined in
Chapter 2. The choice to follow an edge from node i is made according to a
probability distribution (transition probabilities) defined on the set Succ(i) of
successor nodes of i. These transition probabilities, defined on each node i,
will be denoted as

pref
ij = pref(s(t+ 1) = j|s(t) = i) =

aij∑
k∈Succ(i) aik

(9.1)

where aij is element i, j of the adjacency matrix and s(t) is a random variable
containing the node visited by the random walker at time t. Furthermore, Pref

will be the matrix containing the transition probabilities pref
ij as elements. For

consistency, if there is no edge between i and j, we consider that cij takes a
large value, denoted by∞; in this case, the corresponding transition probabil-
ity is equal to zero, pij = 0.

Finally, in this work, we consider that there is a unique absorbing, killing,
node which is the last node n – the goal node. Any transition from this node is
forbidden, that is, pref

nj = 0 for all j.

9.2.2 The standard randomized shortest path formalism

The main idea is the following. We consider the set of all hitting paths, or
walks, ℘ ∈ P from node 1 to the (unique) absorbing, or hitting, node n on
G. We further assume than this absorbing node n can be reached in a finite
number of steps from each other node in the graph. Each path ℘ consists in
a sequence of connected nodes starting in node 1 and ending in n. Then, we
assign a probability distribution P(·) on the set of paths P by minimizing the
generalized free energy1 of statistical physics [130, 190, 202],

minimize
{P(℘)}℘∈P

φ(P) =
∑
℘∈P

P(℘)c̃(℘) + T
∑
℘∈P

P(℘) log

(
P(℘)

π̃(℘)

)
subject to

∑
℘∈P P(℘) = 1

(9.2)

where c̃(℘) =
∑t
τ=1 cs(τ−1)s(τ) is the total cumulated cost along path ℘ when

visiting the sequence of nodes, or states, (s(τ))
t
τ=0 and t is the length of path

1Alternatively, we can adopt a maximum entropy point of view [126, 131]. Moreover, the

free energy could also be defined as φ(P) =
∑
℘∈P P(℘)(c̃(℘)− c∗) + T

∑
℘∈P P(℘) log

(
P(℘)
π̃(℘)

)
where c∗ is the shortest path cost from starting node 1 to destination node n. In this case, costs
are computed relatively to the shortest path cost. This choice leads exactly to the same probability
distribution over paths (Equation (9.3)).
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℘. Furthermore, π̃(℘) =
∏t
τ=1 p

ref
s(τ−1)s(τ) is the product of the transition proba-

bilities (see Equation (9.1)) along path ℘ – the likelihood of path ℘. It defines a
reference probability distribution over paths as

∑
℘∈P π̃(℘) = 1 [95, 94].

The objective function in Equation (9.2) is a mixture of two dissimilarity
terms with the temperature T balancing the trade-off between them. The first
term is the expected cost for reaching destination node from source node (fa-
voring shorter paths – exploitation). The second term corresponds to the rel-
ative entropy, or Kullback-Leibler divergence, between the path probability
distribution and the path likelihood distribution (introducing randomness –
exploration). When the temperature T is low, shorter paths are favored while
when T is large, paths are chosen according to their likelihood in the random
walk on the graph G (i.e. the product of the reference transition probabilities).
Note that we should normally add non-negativity constraints on the path prob-
abilities, but this is not necessary as the resulting quantities s automatically
non-negative (the relative entropy forbids negative values). Note that, instead
of minimizing free energy, it is equivalent to minimize expected cost subject to
a fixed relative entropy constraint [95, 90, 94].

This argument, akin to maximum entropy [126, 131, 130, 138], leads to a
Gibbs- Boltzmann distribution on the set of paths (see, e.g., [95, 94] for a
detailed derivation),

P∗(℘) =
π̃(℘) exp[−θc̃(℘)]∑

℘′∈P
π̃(℘′) exp[−θc̃(℘′)]

=
π̃(℘) exp[−θc̃(℘)]

Z (9.3)

where θ = 1/T is the inverse of the temperature and the denominator Z =∑
℘∈P π̃(℘) exp[−θc̃(℘)] is the partition function of the system. This defines

the optimal mixed policy in terms of probabilities of choosing a path, P∗(℘).
It can be shown that this set of path probabilities is exactly equivalent to the
ones generated by a Markov chain with biased transition probabilities favoring
shorter paths, depending on the temperature T [208].

9.2.3 The minimum free energy

Interestingly, if we replace the probability distribution P(·) by the optimal
distribution P∗(·) provided by Equation (9.3) in the objective function (9.2), we
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obtain for the minimum free energy between node 1 and node n,

φ∗1(T ) = φ(P∗) =
∑
℘∈P

P∗(℘)c̃(℘) + T
∑
℘∈P

P∗(℘) log

(
P∗(℘)

π̃(℘)

)

=
∑
℘∈P

P∗(℘)c̃(℘) + T
∑
℘∈P

P∗(℘)

(
− 1

T
c̃(℘)− logZ

)
= −T logZ (9.4)

9.2.4 Computing interesting quantities from the partition
function

Moreover, several quantities of interest can be computed by taking the partial
derivative of the optimal free energy (9.4) [257, 208, 144, 95, 94, 90].

Expected number of visits to edges and nodes. For instance, from Equa-
tion (9.4), for the expected number of passages through edge (i, j) at tempera-
ture T = 1/θ, that is, the flow in (i, j),

∂φ(P∗)
∂cij

= − 1

θZ
∂Z
∂cij

= − 1

θZ
∑
℘∈P

π̃(℘) exp[−θc̃(℘)](−θ)∂c̃(℘)

∂cij

=
∑
℘∈P

π̃(℘) exp[−θc̃(℘)]

Z
∂c̃(℘)

∂cij

=
∑
℘∈P

P∗(℘) η
(
(i, j) ∈ ℘

)
= n̄ij(T ) (9.5)

where we used ∂c̃(℘)/∂cij = η
(
(i, j) ∈ ℘

)
, with η

(
(i, j) ∈ ℘

)
being the number

of times edge (i, j) appears on path ℘ at temperature T . Therefore, we have
for the flow in (i, j),

n̄ij(T ) = −T ∂ logZ
∂cij

(9.6)

Now, it has already been shown that the partition function can be computed
in closed form (see, e.g., [208, 145, 90] for details). Let us first introduce the
fundamental matrix of the RSP system,

Z = I + W + W2 + · · · = (I−W)−1, with W = Pref ◦ exp[−θC] (9.7)

where C is the cost matrix and ◦ is the elementwise (Hadamard) product.
Elementwise, the entries of the W matrix are wij = [W]ij = pref

ij exp[−θcij ].
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Note that this matrix is sub-stochastic because the costs are non-negative and
node n is absorbing and killing (row n contains only 0 values).

Then, the partition function is simply Z = [Z]1n = z1n (see [257, 208, 144,
95, 94]). More generally [101], we find that

z1k =
∑
℘∈P1k

π̃(℘) exp[−θc̃(℘)] and zkn =
∑
℘∈Pkn

π̃(℘) exp[−θc̃(℘)] (9.8)

with znn = 1 and where P1k is the set of hitting paths starting in node 1 and
ending in node k. Symmetrically, Pkn is the set of hitting paths starting in
node k and ending in node n. The z1k quantities are called the forward vari-
ables whereas the zkn are the backward variables. These variables can be
interpreted as probabilities of surviving during the killed random walk (see,
e.g., [95, 94] for details).

Moreover, the flow in (i, j) can be obtained from (9.7) by

n̄ij(T ) = −1

θ

∂ logZ
∂cij

=
z1ip

ref
ij exp[−θcij ]zjn

z1n
=
z1iwijzjn
z1n

(9.9)

and because only the first row and the last column of Z are needed, two sys-
tems of linear equations can be solved instead of matrix inversion in Equa-
tion (9.7).

From the last equation and zin =
∑n
j=1 wijzjn + δin (the elementwise form

of (I−W)Z = I), the expected number of visits to a node j can be computed
from

n̄i(T ) =

n∑
j=1

n̄ij(T ) + δin =
z1izin
z1n

for i 6= n (9.10)

where we assume i 6= n for the last equality because we already know that
n̄n(T ) = 1 at the ending node, which is absorbing and killing.

Note that it can easily be shown that the relative entropy of the paths in
Equation (9.2) can be rewritten in function of the expected number of visits
and the local relative entropy as

∑n−1
i=1 n̄i(T )

∑
j∈Succ(i) pij log

p∗ij
prefij

where the

p∗ij are the transition probabilities defining the current local policy of the ran-
dom walker (probability of following an edge) [208]. In fact, all the quantities
of interest can be computed from the expected number of visits (see [101],
Equation (11)).
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Randomized mixed policy. Furthermore, the optimal transition probabilities
of following an edge (i, j) with i 6= n are

p∗ij(T ) =
n̄ij(T )

n̄i(T )
= pref

ij exp[−θcij ]
zjn
zin

=
wijzjn
zin

=
wijzjn∑

j′=Succ(i) wij′zj′n
(9.11)

as pref
ij exp[−θcij ] = wij and zin =

∑
j=Succ(i) wijzjn for all i 6= n (the elemen-

twise form of (I −W)Z = I, coming from Equation (9.7)). This expression
defines a biased random walk on G – the random walker is “attracted" by the
destination node n. These transition probabilities do not depend on the source
node and correspond to the optimal randomized strategy, or policy, minimiz-
ing free energy. This randomized policy is also called a mixed policy as in
game theory (see, e.g., [186]).

Expected cost until destination. In addition, the expected cost until reaching
hitting node n is [208, 145, 90]

〈c̃〉 =
∑
℘∈P

P∗(℘)c̃(℘) =
∑
℘∈P

π̃(℘) exp[−θc̃(℘)]

Z c̃(℘) (9.12)

By defining the matrix containing the expected number of passages through
the edges by N with [N]ij = n̄ij(T ), the expected cost spread in the network is

〈c̃〉 = −∂ logZ
∂θ

= eT(N ◦C)e (9.13)

where e is a column vector of 1s. This is just the cumulative sum of the expected
number of passages through each edge times the cost of following the edge,∑n−1
i=1

∑
j∈Succ(i) n̄ij(T )cij [101].

Entropy of the paths. In Equation (9.2), the relative entropy of the set of
paths was defined as

J(P∗|π̃) =
∑
℘∈P

P∗(℘) log

(
P∗(℘)

π̃(℘)

)
(9.14)

and, from Equations (9.2) and (9.4), it can be computed thanks to

J(P∗|π̃) = −(logZ + 1
T 〈c̃〉) (9.15)

where the partition function Z = [Z]1n = z1n.
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Free energy distance. It was already shown that the minimal free energy
(9.4) at temperature T is provided by φ∗1(T ) = φ(P∗) = −T logZ = − 1

θ log z1n.
In [95, 94], it was proved that the free energy from any starting node i to ab-
sorbing node n, φ∗i (T ) = − 1

θ log zin, can be computed thanks to the following
recurrence formula to be iterated until convergence

φ∗i (T ) = − 1
θ log zin =


− 1
θ log

 ∑
j∈Succ(i)

pref
ij exp[−θ(cij + φ∗j (T ))]

 if i 6= n

0 if i = n

(9.16)
This equation is an extension of Bellman-Ford’s formula for computing the
shortest path distance in a graph (see, e.g., [34, 62, 66, 135, 201, 215]). More-
over, the recurrence expression (9.16) is also a generalization of the distributed
consensus algorithm developed in [227], considering binary costs only.

It was shown [95, 94] that this minimal free energy interpolates between
the least cost (T = θ−1 → ∞; φ∗i (∞) = minj∈Succ(i){cij + φ∗j (∞)} and
φ∗n(∞) = 0) and the expected cost before absorption (T = θ−1 → 0; φ∗i (0) =∑
j∈Succ(i) p

ref
ij (cij + φ∗j (0)) and φ∗n(0) = 0) [144, 95, 94]. In addition [144, 95,

94], this quantity defines a directed distance between any node and absorbing
node n.

In fact, as discussed in [95, 94], this last expression is obtained by simply
replacing the min operator by a weighted version of the softmin operator ([64];
also called the Log-Sum-Exp function [46, 227]) in the standard Bellman-Ford
recurrence formula,

softminq,θ(x) = − 1
θ log

( n∑
j=1

qj exp[−θxj ]
)

with all qj ≥ 0 and
∑n
j=1 qj = 1

(9.17)
which is a smooth approximation of the min operator and interpolates between
weighted average and minimum operators, depending on the parameter θ [64,
227]. It also appeared in control [237] and exploration strategies for which an
additional Kullback-Leibler cost term is incorporated in the immediate cost
[207, 137, 234, 233, 18]. Moreover, this function was recently proposed as an
operator guiding exploration in reinforcement learning, and more specifically
for the SARSA algorithm [13, 14].
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Note that the optimal mixed policy derived in Equation (9.11) can be rewrit-
ten in function of the free energy as

p∗ij(T ) =
pref
ij exp[−θcij ]zjn∑n

j′=1 p
ref
ij′ exp[−θcij′ ]zj′n

=
pref
ij exp[−θ(cij + φ∗j (T ))]∑n

j′=1 p
ref
ij′ exp[−θ(cij′ + φ∗j′(T ))]

(9.18)
because zin = exp[−θφ∗i (T )] and zin =

∑n
j=1 wijzjn =

∑n
j=1 p

ref
ij exp[−θcij ]zjn

for all i 6= n. This corresponds to a multinomial logistic function.

9.3 Randomized shortest paths with constrained
transition probabilities

Interestingly, the randomized shortest path formulation can easily be extended
to account for some types of constraints. The goal here is to determine the best
mixed policy for reaching destination node n from source node 1 subject to
equality constraints on some transition probabilities, given by Equation (9.18).
We proceed as in previous section, but we now constrain the transition prob-
abilities associated to some nodes to be equal to predefined values provided
by the user. In other words, we constrain the relative flow passing through the
edges starting from some nodes belonging to a set of nodes C (the constrained
nodes).

9.3.1 The Lagrange function

More precisely, the considered constraints on the nodes i ∈ C are

p∗ij(T ) =
n̄ij(T )

n̄i(T )
=

n̄ij(T )∑
j∈Succ(i) n̄ij(T )

= qij for the edges starting in nodes i ∈ C

(9.19)
which are independent of T . These transition probabilities qij are specified by
the user for all the nodes in C. We assume that these constraints are feasible.
In particular, we must have

∑
j∈Succ(i) qij = 1 for all i ∈ C. Moreover, the

RSP model (see Equation (9.2)) implies that we should recover a pure random
walk behavior, with reference probabilities provided by Equation (9.1), when
T →∞. Therefore, to be consistent, the reference probabilities must be chosen
such that pref

ij = p∗ij(T = ∞) = qij for nodes i ∈ C. We assume that this is the
case in the sequel.
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We consider the following Lagrange function

L (P,λ) =
∑
℘∈P

P(℘)c̃(℘) + T
∑
℘∈P

P(℘) log

(
P(℘)

π̃(℘)

)
free energy, φ(P)

+µ

(∑
℘∈P

P(℘)− 1

)

+
∑
i∈C

∑
j∈Succ(i)

λij

[∑
℘∈P

P(℘) η
(
(i, j) ∈ ℘

)
n̄ij(T )

−qij
∑
℘∈P

P(℘) η(i ∈ ℘)

n̄i(T )

]

(9.20)

where, as before, P is the set of paths from node 1 to node n and with η
(
(i, j) ∈

℘
)

being the number of times edge (i, j) appears on path ℘. In a similar way,
η(i ∈ ℘) is the number of times node i is visited on path ℘.

The Lagrange function can be rearranged as

L (P,λ) (9.21)

=
∑
℘∈P

P(℘)

[
c̃(℘) +

∑
i∈C

∑
j∈S(i)

λij η
(
(i, j) ∈ ℘

)
−
∑
i∈C

η(i ∈ ℘)
∑

j′∈S(i)

qij′ λij′

c̃′(℘)

]

+ T
∑
℘∈P

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

(∑
℘∈P

P(℘)− 1

)

=
∑
℘∈P

P(℘)c̃′(℘) + T
∑
℘∈P

P(℘) log

(
P(℘)

π̃(℘)

)
free energy φ′(P)

+µ

(∑
℘∈P

P(℘)− 1

)
(9.22)

where S(i) has been used as a shortcut for Succ(i) and, by using η(i ∈ ℘) =∑
j∈S(i) η

(
(i, j) ∈ ℘

)
, the local costs cij are redefined as

c′ij =


cij + λij −

∑
j′∈Succ(i)

qij′λij′

cost update ∆ij

when node i ∈ C

cij otherwise

(9.23)

and C′ will be the matrix containing these new costs c′ij = cij + ∆ij , which
are called the augmented costs. We observe that Equation (9.22) is exactly a
randomized shortest paths problem (see Equation (9.2)) containing augmented
costs instead of the initial costs.
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We further observe that the weighted (by transition probabilities) mean of
the cost updates ∆ij = λij −

∑
j′∈Succ(i) qij′λij′ is equal to zero on each node

i ∈ C:
∑
j∈Succ(i) qij∆ij = 0. This implies that the weighted average of the

augmented costs is equal to the weighted average of the original costs on each
constrained node i,

∑
j∈Succ(i) qijc

′
ij =

∑
j∈Succ(i) qijcij . Therefore, this choice

ensures that the expected augmented cost is equal to the real expected cost pro-
vided by Equation (9.13), 〈c̃′〉 = eT(N ◦C′)e = 〈c̃〉. In this case, the perceived
cost when visiting any node using the augmented costs (C′) is exactly the same
in average as the perceived real cost (C) when no constraint is introduced.

Thus, in Equation (9.22), everything happens as if the costs have been
redefined by taking into account the Lagrange parameters. These Lagrange
parameters can therefore be interpreted as additional costs necessary to satisfy
the equality constraints. We now find the λi by using Lagrangian duality.

Let φ′(P) be the free energy obtained from these augmented costs. We now
have to find the λij by Lagrangian duality.

9.3.2 Exploiting Lagrangian duality

In this section, as in [126, 131], we will take advantage of the fact that, in our
formulation of the problem, the Lagrange dual function and its gradient are
easy to compute.

As the objective function is convex and all the equality constraints are lin-
ear, there is only one global minimum and the duality gap is zero [35, 69,
112]. The optimum is a saddle point of the Lagrange function and a common
optimization procedure (often called Arrow-Hurwicz-Uzawa [12]) consists in
sequentially (i) solving the primal while considering the Lagrange parameters
as fixed and then (ii) solving the dual (which is concave) while considering the
variables to be optimized (the paths probabilities) as fixed, until convergence.

In our context, this provides the two following steps which are iteratedL (P∗,λ) = minimize
{P(℘)}℘∈P

L (P,λ) (compute the dual function)

L (P∗,λ∗) = maximize
λ

L (P∗,λ) (maximize the dual function)
(9.24)

and this is the procedure that is followed, where the dual function is maxi-
mized through a simple coordinate ascend on Lagrange multipliers.
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9.3.3 Computing the dual function

We already know from (9.3) that the first step in Equation (9.24) leads to

P∗(℘) =
π̃(℘) exp[−θc̃′(℘)]∑

℘′∈P
π̃(℘′) exp[−θc̃′(℘′)]

=
π̃(℘) exp[−θc̃′(℘)]

Z ′ (9.25)

where c̃′(℘) is the augmented cost of a path. Notice that once the optimal
probability distribution on paths has been computed, the expected number
of transitions through any edge can be deduced from Equation (9.5) and the
transition probabilities from (9.11). The partition function Z ′, and the z′in in
general, can then be obtained from Equation (9.11).

Then, from Equations (9.4) and (9.22), the dual function can easily be com-
puted in function of the partition function defined from the augmented costs,

L (P∗,λ) = −T logZ ′ (9.26)

and has to be maximized with respect to the {λij}with i ∈ C and j ∈ Succ(i).

9.3.4 Maximizing the dual function

Let us now try to maximize the dual function. Because n̄i(T ) =∑
j∈Succ(i) n̄ij(T ), by following the reasoning of previous subsection, we ob-

tain

∂L (P∗,λ)

∂λij
=
∂(−T logZ ′)

∂λij

=
∑

j′∈Succ(i)

∂(−T logZ ′)
∂c′ij′

∂c′ij′

∂λij

=
∑

j′∈Succ(i)

n̄ij′(T )(δjj′ − qij)

= n̄ij(T )− qij n̄i(T ) (9.27)

Quite naturally, setting the result to zero provides the constraints for nodes
i ∈ C,

n̄ij(T )

n̄i(T )
= qij (9.28)

and we now have to solve this equation in terms of the Lagrange parameter,
λij .
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9.3.5 Computing the Lagrange parameters

Recalling that n̄i(T ) =
∑
j∈Succ(i) n̄ij(T ) and Equations (9.9) and (9.11), we

obtain, for each i ∈ C and j ∈ Succ(i),

pref
ij exp[−θc′ij ]zjn

zin
= qij (9.29)

The objective of this subsection is to compute each augmented cost (and thus
the Lagrange parameter λij , see Equation (9.23)) corresponding to nodes i ∈ C
from this equation by isolating c′ij , given that the backward variables zin are
fixed once we know the optimal path distribution.

Recall (see the discussion following Equation (9.19)) that it was assumed
that the imposed qij and the reference transition probabilities pref

ij are consistent
on constrained nodes, that is, pref

ij = qij for all i ∈ C. We thus obtain, for i ∈ C,

exp[−θc′ij ]zjn
zin

=
exp[−θc′ij ]zjn∑

j′∈Succ(i) p
ref
ij′ exp[−θc′ij′ ]zj′n

= 1 (9.30)

as zin =
∑n
j=1 p

ref
ij exp[−θcij ]zjn for all i 6= n (see Equation (9.18)).

This shows that the augmented costs related to a constrained node are only
defined up to the addition of a constant term (a translation). This gives us
the opportunity to constrain the weighted average of the augmented costs
c′ij = cij + ∆ij to be equal to the weighted average of the original costs, as
required – see the discussion following Equation (9.23). The ∆ij have to be
computed from this previous equation while satisfying this constraint, which
reduces to ∆ij = λij −

∑
j′∈Succ(i) qij′λij′ , as shown before.

Let us isolate ∆ij in Equation (9.30):

exp[θ∆ij ] =
exp[−θcij ]zjn

zin
(9.31)

Then, by taking 1
θ log of both sides,

∆ij = 1
θ log (exp[−θcij ]zjn)− 1

θ log zin

= 1
θ log(zjn)− cij

λij

− 1
θ log zin (9.32)
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where we defined λij = 1
θ log(zjn) − cij . Multiplying both sides by qij and

summing over j provides

1
θ log zin =

∑
j∈Succ(i)

qij
(

1
θ log(zjn)− cij

)
(9.33)

which, from (9.32), just aims to center the λij , as required.
This suggests the following sequential steps to be applied on each node

i ∈ C in turn
λij ← 1

θ log(zjn)− cij for all j ∈ Succ(i)
∆ij ← λij −

∑
j′∈Succ(i) qij′λij′ for all j ∈ Succ(i)

c′ij ← cij + ∆ij for all j ∈ Succ(i)
(9.34)

until convergence. Recall also that, for consistency, qij = pref
ij on constrained

nodes.

9.3.6 The final procedure

Therefore, after initializing the Lagrange parameters to 0, the final procedure
iterates the following steps:

I The elements of the fundamental matrix are computed thanks to Equa-
tion (9.7) from the augmented costs c′ij (defined in Equation (9.23)) and
from the transition matrix of the natural random walk on G (Equa-
tion (9.1)), where destination node n is made absorbing and killing.

I The augmented costs are updated for all edges incident to constrained
nodes (in C) thanks to the three cases detailed in Equation (9.34).

After convergence of the two previous steps, the optimal policy is com-
puted thanks to Equation (9.11) by using the augmented costs c′ij instead of
cij . This provides optimal transition probabilities p∗ij(T ). We now apply this
procedure in order to solve simple Markov decision problems.

9.4 Markov decision processes as a constrained ran-
domized shortest path on a bipartite graph

The previous sections described all the needed tools for computing an optimal
mixed policy on a Markov decision process (MDP). Recall that, as in [34], we
assume that there is a special cost-free destination or goal node n; once the
system has reached that node, it simply disappears (killing node). Thus, node
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n has no outgoing edge. As in [208], we also consider a problem structure
such that termination is inevitable. Thus, the horizon is in effect finite, but its
length is random and it depends on the policy being used. The conditions for
which this is true are, basically, related to the fact that the destination node
can be reached in a finite number of steps from any potential initial node; for a
rigorous treatment, see e.g. [34, 32].

The main objective is thus to design a randomized mixed policy minimiz-
ing the expected cost-to-go subject to an entropy constraint controlling the
total randomness spread in the network, and therefore the exploration rate. In
other words, we are looking for an optimal policy or, in our case, an optimal
transition probabilities matrix P∗ of a finite, first-order, Markov chain mini-
mizing the expected cost needed to reach the destination state from the initial
state, while fixing the entropy spread in the chain as well as the transition
probabilities provided by the environment.

Therefore, the solution is obtained by the algorithm described in Subsection
9.3.6 – the randomized shortest paths with constraints on transition probabili-
ties – applied to a bipartite graph, as described now.

9.4.1 Basic framework and procedure

The Markov decision process is now viewed as a (constrained) randomized
shortest path on a bipartite graph (see Figure 9.1). First, we examine how the
reference transition probabilities defining the natural random walk on this
graph are defined. Then, the structure of the bipartite graph and the way to
compute the optimal policy are described. Finally, the precise form of the
matrices needed to run the constrained RSP is detailed.

Pure random walk: reference probabilities. More precisely, in the case of a
pure random walk (the reference transition probabilities (Equation 9.1), corre-
sponding to T →∞ in Equation (9.2)), we consider that agents are sent from
an initial state 1 and that, at each state s = k (n states in total, S), they choose an
action ak = u with a probability mass pref

ku , k ∈ S \n and u ∈ U(k), the set of ac-
tions available in state k. When no prior information on the system is available,
these are usually set to pref

ku = 1/|U(k)| (a uniform distribution). In our bipar-
tite graph, U(k) is nothing else than the successors of node k, U(k) = Succ(k).
State n is still the absorbing, killing, state (the goal state).

Agents then perform the chosen action u, and incur a finite cost cku asso-
ciated to the execution of action u in state k. They then jump to the next state
s = l with a reference transition probability pref

ul provided by the environment,
where l ∈ S and u ∈ A, depending on the action. This behavior corresponds to
a pure exploration, according to the Markov chain with transition probabilities
pref
ul and, for consistency, these transition probabilities must be equal to the
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States Actions

k ∈ S u ∈ A

1

2

. . .

k

. . .

n

n+ 1

n+ 2

. . .

u

. . .

n+m

prefuk

prefk(n+m)

Pref
SA

Pref
AS

F I G U R E 9 . 1 : The bipartite graph with states on the left side
(S) and control actions on the right (A). Node 1 is the initial
state while node n is the absorbing, destination, state of the
system. The transition probabilities from states to actions prefku
are gathered in matrix Pref

SA and the transition probabilities
from actions to states prefku , provided by the environment, are

gathered in matrix Pref
AS .

constrained transition probabilities, qul, as discussed in the previous section.
Notice that an additional cost could also be associated to the transition to state
l, after action u is performed, as, e.g., in [225], but in this work we adopt the
simpler setting where the cost is a function of the action u in state k only [194,
235].

Definition of the bipartite graph. Therefore, the process can be modeled as
a directed bipartite graph Gb in which the left nodes are the original states
S and the right nodes are the possible actions associated to the states, A =
U(1) ∪ U(2) ∪ . . . ∪ U(n− 1) (n is absorbing and has no associated action). We
have n = |S| and m = |A|. Note that each action associated to a state is a node
of Gb, even if the same action is also available in some other nodes – actions
are duplicated for each node in which they appear. Therefore, the number of
such right nodes is |A| = |U(1)|+ |U(2)|+ · · ·+ |U(n− 1)| = m.
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Moreover, it is assumed that, in this bipartite graph Gb, the nodes corre-
sponding to states S are numbered first (from 1 to n) and actions A are follow-
ing (from n+ 1 to n+m). Therefore, the set of available actions in any state k
is nothing else that the successor nodes of k, U(k) = Succ(k).

The optimal mixed policy. When the temperature T decreases, the agents
are more and more exploiting good policies while still exploring the envi-
ronment – they interpolate between a purely random behavior (guided by
the reference probabilities) and the best, deterministic, policy solving the
Markov decision process, provided, e.g., by the value iteration algorithm
[197, 224, 33, 34]. The control actions u ∈ A are then chosen according to
an optimal stochastic policy Π∗, mapping every state k to the set U(k) of
available actions with a probability mass p∗ku(T ) provided by the randomized
shortest path model applied on graph Gb (see Equation (9.11)). The policy
Π ≡ {p∗ku(T ), k ∈ S \ n ∧ u ∈ U(k)} defines, for each state k, an optimal prob-
ability distribution on the set U(k) of actions available in this state, provided
by Equation (9.11), and gradually biasing the walk towards the optimal, deter-
ministic, policy. Recall that the policy is optimal in the sense that it minimizes
expected cost for a given degree of relative entropy (see Equation (9.2)).

For instance, if the indexes of the available actions in some state k are
U(k) = {5, 6, 7}, the probability mass p∗ku(T ) specifies three probabilities
p∗k5(T ), p∗k6(T ), and p∗k7(T ), summing to one. These optimal transition prob-
abilities are provided by the policy obtained from the constrained random-
ized shortest paths model applied on the bipartite graph Gb, that is, by Equa-
tion (9.11).

As discussed in [208], such random choices are common in a variety of
fields, for instance decision sciences [200] or game theory, where they are called
mixed strategies (see, e.g., [186]). Thus, the problem tackled in this section
simply corresponds to a constrained randomized shortest path problem (RSP)
on Gb.

Useful matrices. Recall that, in the randomized shortest path framework, the
procedure for computing the optimal policy takes three quantities in input: the
reference transition probabilities, the cost matrix and the set of constrained
nodes.

The n × m reference transition probabilities matrix Pref
SA (states-actions)

contains the pref
ku for the transitions from the left nodes (states in S) and the

right nodes (actions in A) of Gb. For node n (the killing absorbing node), the
corresponding row of Pref

SA (the last row) is set equal to 0. Indeed, there are no
actions associated to this node.

In a symmetric way, once an action inA has been chosen, the agent is in the
corresponding action node in the bipartite graph Gb, say node u ∈ A. Then,
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he jumps to a state k ∈ S with probability pref
uk (actions-states), predefined by

the environment. It reflects the probability of ending in state s = k once action
a = u has been chosen. The correspondingm×n transition probabilities matrix
from actions to states is Pref

AS and its elements are equal to the constrained
transition probabilities, pref

uk = quk. The set of action nodes is therefore the set
of constrained nodes.

Consequently, the transition matrix of the bipartite graph Gb is

Pref =

[ S A

S O Pref
SA

A Pref
AS O

]
(9.35)

where O is a 0 matrix of the appropriate size. Its elements are pref
ij .

Moreover, the cost matrix for the bipartite graph Gb is

Cb =

[ S A

S O C
A O O

]
(9.36)

that is, as in [34, 194], costs are only defined on state-action edges, cku with
k ∈ S \ n and u ∈ A. The other costs are equal to zero (no incurred cost
for action-state transitions). Extensions to costs defined on action-state edges
are possible, but are omitted to keep things simple. Row n of this matrix,
corresponding to the killing absorbing node, is set to 0.

Finally, the set of constrained nodes is simply the set of action nodes A
from which the transition probabilities are provided by the environment, Pref

AS .

Computing the optimal policy. Once these matrices are computed, the opti-
mal randomized policy interpolating between the optimal deterministic pol-
icy of the standard MDP and a pure random walk defined by the reference
transition matrix Pref is obtained by applying the randomized shortest path
procedure on the graph Gb (see Subsection 9.3.6). The optimal mixed policy is
obtained from Equation (9.11).

We now describe a simplified way for obtaining the optimal mixed policy,
inspired by the value iteration algorithm.

9.4.2 A simple soft value iteration algorithm

Interestingly and surprisingly, we will now show that replacing the minimum
operator by a softmin operator in the standard value iteration algorithm pro-
vides exactly the same results as the constrained RSP. This property leads
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to a simple algorithm, extending the standard value iteration algorithm, for
computing randomized policies.

This shows that the proposition of using the softmin function for explo-
ration in reinforcement learning [18, 14, 207, 137, 234, 233] is also globally
optimal in that it minimizes expected path cost subject to a fixed relative en-
tropy of paths equality constraint (see Equation (9.2)), at least in our setting of
a absorbing, goal, node n reachable from any other node of the graph.

The value iteration algorithm

Let us first recall the standard value iteration procedure, computing the ex-
pected cost until absorption by the goal state n [197, 224, 33, 34] when starting
from a node k ∈ S, denoted by vkn, and based on the following recurrence
formula

vkn =


min
u∈U(k)

{
cku +

∑
l∈Succ(u)

pref
ul vln

}
if k 6= n

0 if k = n

(9.37)

where pref
ul is element u, l (with u ∈ A and l ∈ S) of matrix Pref of the reference

random walk on the bipartite graph (see Equation (9.35)). This expression is
iterated until convergence, which is guaranteed under some mild conditions,
for any set of nonnegative initial values (see, e.g., [194, 197, 224, 33, 34] for
details).

The soft value iteration algorithm

We start from the softmin form of the free energy ([95, 94, 90]; see also Equa-
tion (9.16)), which corresponds to a Bellman-Ford algorithm for computing
the shortest path distance in which the min operator has been replaced by the
softmin operator defined in Equation (9.17). Substituting in the same way the
softmin operator for the min in the value iteration update formula provides a
randomized equivalent of the Bellman-Ford optimality conditions,

φSk (T ) =


− 1
θ log

 ∑
u∈U(k)

pref
ku exp

[
− θ
(
cku +

∑
l∈Succ(u)

pref
ul φ

S
l (T )

)] if k 6= n

0 if k = n

(9.38)
which is similar to the expression computing the free energy in Equa-
tion (9.16) where the update is replaced by an equality. The quantity φSk (T ) =
−T log zkn = − 1

θ log zkn (see Appendix B for details), where zkn is the back-
ward variable introduced in Equation (9.8), will be called the free energy of the
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Markov decision process, associated to the different states k ∈ S . This equation
states the necessary optimality conditions and will be called the Bellman-Ford
optimality conditions for the randomized Markov decision process.

Note that it can be shown (see the appendix of [95, 94]) that this recurrence
formula reduces to the standard optimality conditions for Markov decision
processes (Equation (9.37)) when θ →∞. Conversely, when θ → 0, it reduces
to the expression allowing to compute the expected cost until absorption by
the goal state n, also called the average first-passage cost [141, 185], φSk (T ) =∑
u∈U(k) p

ref
ku(cku +

∑
l∈Succ(u) p

ref
ul φ

S
l (T )). Furthermore, it can be shown that

the backward variables zin can be interpreted as the probabilities of reaching
the goal state n, and thus of surviving, during a killed random walk on Gb

with transition probabilities w′ij = pref
ij exp[−θc′ij ], for i ∈ S, j ∈ A, and vice-

versa [95, 94, 90]. The quantity φSk (T ) is the global cost (free energy) associated
to the logarithmh of this probability of surviving.

This suggests the use of the following soft form of value iteration for com-
puting the solution of the randomized Markov decision system by replacing
the equality by an update in (9.38),

φSk (T )←


− 1
θ log

 ∑
u∈U(k)

pref
ku exp

[
− θ
(
cku +

∑
l∈Succ(u)

pref
ul φ

S
l (T )

)] if k 6= n

0 if k = n

(9.39)
which has to be iterated over all states until convergence.

After convergence of the values to a fixed point, optimality conditions (9.38)
should be verified. Then, the optimal policy for each node k ∈ S \ n and k 6= n
is computed thanks to

p∗ku(T ) =

pref
ku exp

[
− θ
(
cku +

∑
l∈Succ(u)

pref
ul φ

S
l (T )

)]
∑

u′∈U(k)

pref
ku′ exp

[
− θ
(
cku′ +

∑
l∈Succ(u′)

pref
u′lφ

S
l (T )

)] for k 6= n (9.40)

which provides the probability of choosing action u within state k.
This procedure, involving the iteration of Equation (9.38) and the compu-

tation of the optimal policy from Equation (9.40), will be called the soft value
iteration algorithm.

As for the free energy of the bag-of-paths system [95, 94], we derive – and
thus justify theoretically – this iterative algorithm from the randomized short-
est paths framework. The derivation is provided in Appendix B.

We observed empirically in all our experiments that both techniques (the
soft value iteration and the constrained randomized shortest path procedures)
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Evolution of mean score and entropy with theta

F I G U R E 9 . 2 : For an increasing θ (in logarithmic scale), all
mixed strategies based on the soft value iteration (see Equa-
tion (9.39)) are comared and results are reported. The blue
curve depicts the evolution of the average (over 10e6 turns)
score at the end of each turn (reward, larger is better) for an
“artificial” player, whose policy is provided by the constrained
randomized shortest path model, in terms of the strategies ob-
tained with different values of the θ parameter. Conversely,
the red curve indicates the average entropy of the different
strategies. The largest entropy is achieved when θ is smallest,

and is minimum when θ is largest.

converge and provide exactly the same policies.

9.5 Simulations and discussion: application to the
421 dice game

This section describes an experiment illustrating the application of constrained
randomized shortest paths to Markov decision problems. Several different
simulations have been run on four different problems but, in order to save
space, we decided to report only one application, the 421 game.

9.5.1 Rules of the 421 game

The 421 dice game (quatre-cent-vingt-et-un in french [133]) is popular in France
and Belgium and is played with three six-faced dice and 11 tokens (represent-
ing penalties). A player looses the game when he gets all tokens – the goal is
thus to get rid of our tokens. The game is composed of two phases:
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TA B L E 9 . 1 : Results of the soft value iteration method (SVI
with a high θ) performed on the 421 game. The first column
represents the states of the set of three dices (dices drawings
are sorted in increasing order). The second column provides
the corresponding reward scores defined in the game. The
third and fourth columns show the optimal strategies pro-
vided by the Markov decision process, respectively for the
first re-roll and the second one (it indicates which dice has to

be re-rolled, formatted as three booleans).

DDD Score SVI reroll 1 SVI reroll 2 DDD Score SVI reroll 1 SVI reroll 2
111 7 0 0 0 0 0 0 543 2 1 0 1 0 0 0
211 2 1 0 0 1 0 0 544 1 1 0 1 1 0 1
221 1 0 1 0 0 1 0 551 1 1 1 0 1 1 0
222 3 0 0 0 0 0 0 552 1 1 1 1 0 0 1
311 3 1 0 0 1 0 0 553 1 1 1 1 0 0 1
321 2 1 0 0 1 0 0 554 1 1 1 0 1 1 0
322 1 1 1 1 1 1 1 555 3 0 0 0 0 0 0
331 1 1 1 0 1 1 0 611 6 0 0 0 0 0 0
332 1 1 1 1 1 1 1 621 1 1 0 0 1 0 0
333 3 0 0 0 0 0 0 622 1 1 1 1 1 1 1
411 4 1 0 0 1 0 0 631 1 1 1 0 1 1 0
421 8 0 0 0 0 0 0 632 1 1 1 1 1 1 1
422 1 0 0 1 0 0 1 633 1 1 1 1 1 1 1
431 1 0 1 0 0 1 0 641 1 1 0 0 1 0 0
432 2 0 1 0 0 1 0 642 1 1 0 0 1 0 0
433 1 0 1 1 0 1 1 643 1 1 0 1 1 0 1
441 1 0 1 0 0 1 0 644 1 1 0 1 1 0 1
442 1 0 1 0 0 1 0 651 1 1 1 0 1 1 0
443 1 1 0 1 1 0 1 652 1 1 1 1 1 1 1
444 3 0 0 0 0 0 0 653 1 1 1 1 1 1 1
511 5 1 0 0 0 0 0 654 2 1 1 0 0 0 0
521 1 1 0 0 1 0 0 655 1 1 1 1 1 0 0
522 1 1 1 1 1 1 1 661 1 1 1 0 1 1 0
531 1 1 1 0 1 1 0 662 1 0 0 1 0 0 1
532 1 1 1 1 1 1 1 663 1 0 0 1 0 0 1
533 1 1 1 1 1 1 1 664 1 0 0 1 0 0 1
541 1 1 0 0 1 0 0 665 1 0 0 1 0 0 1
542 1 1 0 0 1 0 0 666 3 0 0 0 0 0 0

166



Chapter 9. Constrained randomized shortest path problems

Policy with θ = 0.1 Policy with θ = 1 Policy with θ = 10

421 (1st roll)

000 001 010 100 101 011 110 111

21%

11% 12% 11% 11% 11% 12% 11%

000 001 010 100 101 011 110 111

98%

0% 1% 1% 0% 0% 0% 0%

000 001 010 100 101 011 110 111

100%

0% 0% 0% 0% 0% 0% 0%

221 (1st roll)

000 001 010 100 101 011 110 111

12% 12% 13% 13% 12% 12% 13% 13%

000 001 010 100 101 011 110 111

4% 7%

22% 22%

9% 9%

18%

9%

000 001 010 100 101 011 110 111

0% 0%

45% 45%

0% 0%

10%

0%

532 (1st roll)

000 001 010 100 101 011 110 111

12% 12% 12% 13% 12% 13% 13% 13%

000 001 010 100 101 011 110 111

7%
11% 11% 12% 12% 13%

17% 17%

000 001 010 100 101 011 110 111

0% 0% 0% 0% 1% 1%

42%

56%

543 (1st roll)

000 001 010 100 101 011 110 111

13% 13% 12% 12% 13% 12% 12% 13%

000 001 010 100 101 011 110 111

17%
11% 10% 11%

16%
11% 10%

14%

000 001 010 100 101 011 110 111

1% 1% 0% 0%

69%

1% 0%

28%

543 (2nd roll)

000 001 010 100 101 011 110 111

13% 13% 12% 12% 13% 12% 12% 13%

000 001 010 100 101 011 110 111

21%

11% 9% 11%
16%

10% 10%
14%

000 001 010 100 101 011 110 111

92%

0% 0% 0%
6%

0% 0% 2%

F I G U R E 9 . 3 : Mixed (randomized) policy provided by the
soft value iteration (SVI, Equations (9.39)-(9.40)), for some in-
teresting cases. The resulting policies interpolate between a
uniform distribution (equal to the reference transition prob-
abilities, left) when θ → 0 and the deterministic, optimal,
policy obtained by the value iteration algorithm (sum of Kro-

necker delta, right), when θ →∞.
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I During the first phase, each player rolls all three dices (no re-rolls are
allowed) and reward scores according to the second column on Table 9.1.
Observe that after each full turn, the player with the lowest resulting
score (according to Table 9.1) must take a certain number of tokens from
the pot. This number is equal to the highest resulting score among
the players for this turn. The game continues until the pot is empty.
Therefore, the goal of the first phase is to distribute the 11 tokens among
players. Thereafter, the second phase can start.

I During the second phase, the players also roll all three dices a first time,
but are now allowed to further re-roll them two times (all or part of the
three dices). Thus, after having rolled all three dices once, the player
has the choice to re-roll dice number 1, number 2 or number 3, two of
these, or even re-roll them all, and this two times. This means that he has
two chances to enhance his score obtained after the first drawing. After
that, he passes his turn to the next player. Therefore, in this game, the
decision actions are how many dices to re-roll (0, 1, 2 or 3) and, in each
of these cases, which dices to re-roll. Moreover, there are two sequential
decisions since the player has the opportunity to re-roll the dices two
times. Note that the state for the player corresponds to the combined
state of the three dices (column 1 of Figure 9.3). Based on this state, the
player has to decide which action has to be performed. Then after re-
rolling (or not) the dices, we end up in a new state and the same applies
after the (potential) second re-roll.

Furthermore, after each full turn, the player with the lowest score (the
loser for this turn) must take a given number of tokens from the player
that scored the highest (the winner for this turn). Here again, this num-
ber is equal to the largest obtained score during this turn. The game
goes on until someone gets all the tokens (11). In this case, he looses the
game (and must pay a beer to the players).

Thus, the Markov decision process (MPD) must only be run during the
second phase. In this example, we do not take into account the interactions
among players, that is, the number of tokens of each player. The goal is to
maximize the reward scores of the considered player, knowing that zero, one
or two re-roll(s) are allowed and we can choose each time which dice to re-draw.
There are 3×56 states for this game (the 56 states of column 1 of Figure 9.3 must
be encoded three times: once for after the first roll, once for after the first re-roll
and once for the second re-roll) plus a (virtual) starting state. Meanwhile, only
56 states from the 6× 6× 6 permutations of the three dices are considered, as
the order of the dices is not taken into account. In this 421 game, the reward
for the MDP at the end of each turn is defined as the number of tokens you get
rid of (transferred to the looser) if you are the winner.
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9.5.2 Simulation results

The optimal policies obtained using the constrained randomized shortest paths
framework (see Section 9.3.6) or using the soft value iteration algorithm (SVI,
Equations (9.39)-(9.40)) are reported for a high θ on Table 9.1. We of course
verified experimentally that the two procedures converge to exactly the same
values and that both converge to the optimal, deterministic, policy when θ in-
creases. Note that the states are denoted as follows. DDD in Table 9.1, column
1, indicates the results of the three dices ordered from the highest value to the
lowest.

The optimal policy is then reported in columns 3 and 4 for the first and the
second re-roll. Note that the strategy can be different during the first re-roll
or the second re-roll (see, e.g., DDD = 543). Re-rolls are coded using three
booleans (for instance, 011 means “re-roll dice 2 and 3 but not dice 1”. The
mean reward, defined as the obtained score after a turn, is 3.06 when playing
the optimal policy. Conversely, when playing randomly and choosing the
policy according to the reference probabilities, the mean reward is much lower,
1.61. It is important to have these values in mind when analyzing the results.

Interesting cases deserving some comments can be identified on Table 9.1:

I 421-like cases: Those are obvious cases (421, 111, 611, ...). If the player
gets those high score combinations, the policy is 000; keep this high score,
that is, do not re-roll.

I 532-like cases: The opposite of 421-like cases. If you get a bad combina-
tion (522, 322, 553, ...), the policy is 111, that is, just re-roll all dices. The
expected value of re-rolling all dice is better than trying to keep interest-
ing dices.

I 221-like cases: Those are the situations where it is advisable to keep some
of the dices to get interesting combinations. A good example is 211: just
roll the dice 2. Then,

– If the dice scores 3, 4, 5, 6 or even 1, the number of points increases.

– If the dice scores 2 the number of points stay the same.

I 543-like cases: Those are similar to the previous case but with a different
strategy during the first and the second reroll. The expected score is
1.61 without re-rolls and 3.10 if re-rolls are allowed. 543 has a score of 2.
During the first re-roll, the expected score is therefore higher (3.10), but
become lower during the second (1.61). This difference explains why 543
has different mixed strategies according to the number of re-rolls.

Moreover, the optimal mixed policy obtained by the soft value iteration
with intermediate values of θ is reported for the previous interesting cases
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on Figure 9.3. For cases 421, 532, 221-like, the strategy is very similar during
the first or second re-roll. Notice that the increase of each bin is monotonic
with the increase of θ and that the function interpolates between a uniform
distribution (equal to priors, when θ is small) and the quasi-deterministic (sum
of Kronecker delta, when θ is high) optimal policy.

Finally, Figure 9.2 represents the evolution of the average number of final
tokens after the game (the higher, the better, reported as mean reward averaged
over 10e6 runs of whole turns) and the average entropy in function of θ. The
largest expected reward and minimal entropy are achieved when θ is large
and the opposite is true when θ is small. The resulting functions are both
logistic-shaped between two bounds:

I When θ is small, entropy is maximum as each action has a 1/8 probability
to be chosen. The mean score is minimum and is the same as if we con-
sider a random walk for this MDP. In this particular case, the expected
score is the same as if no re-roll is allowed.

I When θ is large, entropy is minimum and the mixed policy converges
to the optimal, deterministic, policy provided by the standard value it-
eration algorithm. The mean score is maximum and the corresponding
policy induces re-rolls.

This example clearly shows that using a mixed strategy allows to balance
the strength of the player.

9.6 Conclusion

This work presented two procedures for solving constrained randomized short-
est path problems, together with an application to randomized Markov deci-
sion processes, where the problem is viewed as a bipartite graph. The main
objective is to reach a destination node from an initial node in a graph while
minimizing expected cost subject to a relative entropy equality constraint and
transition probabilities constraints on some edges. This model provides a
randomized policy encouraging exploration, balancing exploitation and ex-
ploration. The amount of exploration is monitored by an inverse temperature
parameter.

The problem is expressed in terms of full paths connecting the initial node
to the destination node and can easily be solved. The solution is a Gibbs-
Boltzmann probability distribution on the set of paths with sone virtual costs
associated to the constrained edges.

The first algorithm solves the problem by exploiting Lagrange duality and
requires to solve iteratively the standard randomized shortest paths problem
until convergence of the virtual costs.
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The second algorithm is reminiscent of Bellman-Ford’s algorithm for solv-
ing the shortest path distance problem. It simply aims to replace the min oper-
ator by a softmin operator in Bellman-Ford’s recurrence relation for updating
the unconstrained nodes.

The usefulness of these algorithms is then illustrated on standard Markov
decision problems. Indeed, a standard Markov decision process can be reinter-
preted as a randomized shortest paths problem on a bipartite graph. Standard
Markov decision problems are thus easily solved by the two introduced algo-
rithms: they provide a randomized policy minimizing expected cost under
equality constraints.

This shows that the exploration strategy using the softmin instead of the
min in the value iteration algorithm is optimal in the predefined sense. It
therefore justifies from another, RSP, point of view the previous work [13, 14,
17, 18, 92, 137, 207, 234, 233, 237].

Future work will focus on extending the randomized shortest paths model
in order to deal with other types of constraints. In particular we will work on
inequality constraints on transition probabilities, as well as flow equality and
inequality constraints, both on node flows and edge flows. Another interesting
extension of the RSP model is the multi-sources multi-destinations randomized
optimal transport on a graph generalizing the deterministic problem optimal
transport on a graph problem.
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Chapter 10

Conclusion

This thesis was devoted to network analysis, based on a framework called the
bag-of-paths, which is introduced in Chapter 4 (Chapter 8 is not based on this
framework, but implement concepts from Chapter 2, 3, and 5). We discuss
different applications of the framework such as semi-supervised classification,
criticality measures, and randomized policies for Markov decision processes,
as the title of this work suggests.

This last chapter provides a summary of the present thesis and is struc-
tured as follows: Section 10.1 is a quick overview of the different chapters,
Section 10.2 aims to summarize the contributions of these chapters, and Sec-
tion 10.3 summarizes the limitations of the work. Finally, a last discussion in
Section 10.4 concludes this chapter and the thesis.

10.1 Overview

Let us start by an overview, conveniently organized per chapter:

I Chapter 1 is a general introduction followed by the plan of the work.

I Chapter 2 and Chapter 3 review the underlying graph and semi-
supervised learning concepts, respectively.

I Then we introduce the bag-of-paths framework in Chapter 4, emphasiz-
ing on its mathematical derivation and its graph-based interpretation.

I In Chapter 5, a classifier based on a group betweenness defined within
the bag-of-paths framework is derived for graph-based semi-supervised
classification. This approach outperforms seven state-of-the-art graph-
based classifiers, based on 14 datasets.

I In Chapter 6, 16 semi-supervised classification methods are investigated
to compare the feature-based approach, the graph structure based ap-
proach, and a dual approach combining both information sources. From
those 16 classifiers, two are based on the bag-of-paths framework.
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I In Chapter 7, a graph criticality measure based on the bag-of-paths frame-
work (and a faster approximate version) is derived and compared to 12
competing measures. Here again, our approach is competitive in com-
parison with the other investigated state-of-the-art methods.

I In Chapter 8, a graph-based fraud detection system, called APATE, is
improved using the concepts presented in Chapters 2, 3, and 5. It al-
lows to efficiently identify frauds among a real-life database consisting
of millions of credit-card transactions.

I In Chapter 9, two methods tackling Markov decision problems are pre-
sented and compared through one example. The originality comes from
the fact that the output of those methods (based on the bag-of-paths
framework) are mixed, randomized, strategies.

10.2 Contributions

Contributions for the original chapters (5-8) are summarized below.

I In Chapter 5, a graph-based semi-supervised classification algorithm
based on a group betweenness measure is developed. All computational
steps are computable in closed form. Furthermore, 13 classifications
datasets are identified and referenced for further research and all the
Matlab code is made available on internet.

I In Chapter 6, the problem of multiple data sources (graph and plain
features) is addressed. This problem is complex because nothing tells
a priori how this information should be handled. The chapter investi-
gates multiple interesting questions: How to combine both information
sources ? Is one of of the information source better than the other? Is
it always the case ? What about dimensionality reduction (a large topic
in machine learning) ? How should we proceed in practice ? We used
an extensive study to draw some general conclusions and advices to an-
swer those complex questions. Here again, 10 classification datasets are
identified and referenced for further research and all the Matlab code is
available from internet.

I In Chapter 7, the criticality measure of a graph, or the identification
of the most critical nodes is investigated. We develop a new criticality
measure based on the bag-of-paths framework. This measure (and its
faster approximation) is compared to 12 competing measures. Finally,
an objective criterion to assess the efficiency of criticality measures is
investigated, based on the generation of a large number of synthetic and
real graphs.
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I In Chapter 8, we proposed three major improvements to an existing al-
gorithm named APATE [241]. First, the highly connected nodes (hubs)
harmful effect is damped. Second, semi-supervised learning is intro-
duced to increase the performance of the model. Finally, human feedback
is used to further improve the results.

I Chapter 9, This work extends the randomized shortest path framework
(RSP, close to the bag-of-paths framework) in two directions. First, it
shows how to deal with equality constraints on transition probabilities
and derives a generic algorithm for solving the problem. Second, it de-
rives a simple algorithm to compute the optimal, mixed, policy solving
Markov decision processes (MDP) by considering a constrained RSP on
a bipartite graph. The resulting algorithm allows to balance exploitation
and exploration in an optimal way by interpolating between a pure ran-
dom behavior and the optimal, deterministic, policy. It is also shown
that the mixed policy can be obtained by iterating the Bellman’s value
iteration equations in which the minimum operator is replaced by a soft
minimum.

10.3 Limitations

The limitations of the original chapters are summarized below. Here again,
Chapters 1, 2, 3, 4, and 10 are not present in this section.

I In Chapter 5, the biggest drawback of the BoP classifier is that it is not
computationally tractable for large graphs. Investigations have been
carried in that direction but no convincing solution has been found. The
limiting step is the computation of matrix Z (the fundamental matrix),
which requires a full matrix inversion.

I In Chapter 6, a key issue is to determine a priori if a given dataset is
graph-driven or features-driven, since this information is important in or-
der to choose the most efficient algorithm combining graph and plain fea-
tures information. Spatial autocorrelation coefficients can help to tackle
this issue but cannot be used in practice as they assume that all class
labels are known. How can we relax this hypothesis ? We still have no
answer at this point. Furthermore, no scalability effect has been studied.

I In Chapter 7, this study should be confirmed on larger networks. Here
again, the limiting step is the computation of matrix Z (the fundamental
matrix), which require a full matrix inversion. At that point, no convinc-
ing solution has been found.
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I In Chapter 8, the proposed system is a very domain-specific application
and the algorithm could certainly be modified to tackle other scenarios.
By the way, the main point is that semi-supervised learning, hubs damp-
ing in graphs and utilization of feedback can improve performance of
generic algorithms. In this chapter, the problem of scalability has been a
major issue, but at the end it is possible to deal with millions of transac-
tions in a few minutes.

I Chapter 9, presented two procedures for solving randomized Markov
decision processes (MDP):

– The first one main drawback is that it is computationally demand-
ing: it relies on iterative algorithms that must solve a linear system
of equations at each iteration.

– The second procedure is more time-efficient as it is based on a
Bellman-Ford-like algorithm: the soft value iteration. It could scale
on large graphs by using sparse matrices.

10.4 Final discussion

As stated in Chapter 1, the presented work of this thesis is at the center of a
technological revolution. It aims at proposing and developing applications
of the bag-of-paths framework in the context of networks analysis. In this
framework, the Boltzmann sampling distribution depends on a parameter, θ,
gradually biasing the distribution towards shorter paths when θ is large. Then,
only little exploration is performed and only the shortest paths are considered.
On the other hand, when θ is small (close to 0+), longer paths are considered
and are sampled according to the product of the random walk transition prob-
abilities along the path.

In this thesis, the bag-of-paths framework was applied in many problems,
but many more are possible. By the way, it seems more adapted to cases where
data can be expressed (or gathered) as graphs, and when the shortest path and
random walk approaches fail to produce consistently good results. In that case,
using the bag-of-paths, and its underlying interpolation, can actually boost the
performance.

However, this interpolation comes with an increasing computational cost
(discussed in Section 10.3). In some cases, this cost leads to intractability (as in
Chapter 8).

Shortest paths (and to a lesser extent random walks) lead to great, efficient
implementation that the bag-of-paths cannot compete with in terms of running
time.
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We are certain that the bag-of-paths framework can be the basis for many
other techniques, as the various experimental results have already shown.
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Appendix A

The Friedman/Nemenyi test

Despite widely used to compare classifiers, the paired t-test suffers from
three weaknesses [74]: variables must be (i) commensurable, (ii) normally
distributed and (iii) the test is affected by outliers. The Friedman test (and
Nemenyi post-hoc test) does not exhibits those weaknesses.

Therefore, the Friedman/Nemenyi test is used throughout this thesis
to compare multiple classifiers (or more generally, models) across multiple
datasets. The Friedman test provide evidence that the results of the different
classifiers are significantly different (see Section A.1). Then the Nemenyi Post-
hoc test assesses significant superiority/inferiority of each classifiers among
the others (see Section A.2). This Appendix is widely inspired from the ex-
cellent work of [74]. In this context, the classifiers are called methods and a
performance criterion must be chosen (for instance the accuracy, AUC,...)

A.1 The Friedman test

The Friedman test [98, 97] is a non-parametric equivalent of the repeated-
measures ANOVA [88]. It ranks the methods for each dataset separately, best
algorithm getting rank m, the second best rank m− 1, etc (In case of ties, aver-
age ranks are assigned).

Let rij be the rank for the ith dataset (out of N ) and the jth method (out of
k). The Friedman test first computes the average rank of each algorithm, Rj =
1
N

∑N
i=1 rij . The null hypothesis, states that all the algorithms are equivalent

and so that their average ranks Rj should be equal. The alternative hypothesis
states the opposite. Under the null hypothesis, the Friedman statistics

χ2
F =

12N

k(k + 1)

 N∑
j=1

R2
j −

k(k + 1)2

4

 (A.1)
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is distributed according to χ2
F with k − 1 degrees of freedom, when N and k

are big enough (a rule of a thumb is N > 10 and k > 5, which is always the case
in this thesis). Notice that in this thesis all Friedman null hypothesis were (by
far) rejected with p-value< 0.05.

A.2 The Nemenyi post-hoc test

Once Friedman null hypothesis is rejected, the (non parametric) post-hoc Ne-
menyi test can be computed. The Nemenyi test [99] is similar to the Tukey test
for ANOVA [240] and is used when all classifiers must be compared to each
other.

The performance of two classifiers is significantly different (p-value= 0.05)
if the corresponding average ranks differ by at least the critical difference CD:

CD = qα

√
k(k + 1)

6N
(A.2)

where critical value qα is based on the Studentized range statistic divided by√
2. Notice that the Nemenyi post-hoc test is not very powerful due to the

square root of N , which means that many different datasets are required when
the number of methods increases.

In this thesis, we therefore report the result of this test with a plot with the
mean rank of each method plus and minus the corresponding critical difference
CD.
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Proof of main results of
Chapter 9

This chapter compiles mathematical proofs that were moved here to facilitate
the reading of Chapter 9. In particular, it contains the derivation of the soft
value iteration algorithm.

In order to compute the optimal policy p∗ku, we observe from Equation (9.11)
that we need to find the backward variable zun starting from an action u ∈ A,

p∗ku ∝ pref
ku exp[−θcku]zun

in our bipartite graph. The quantity p∗ku then needs to be normalized so that∑
u∈U(k) p

∗
ku = 1.

B.1 Computation of the backward variable on ac-
tion nodes

Now, from the definition of the backward variable (Equation (9.8), but includ-
ing the augmented costs), we obtain by decomposing the paths u n(u ∈ A)
into the first step u → l, and then the remaining steps l  n (see [101] for a
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related computation)

zun =
∑

℘un∈Pun

π̃(℘un) exp[−θc̃′(℘un)]

=
∑

l∈Succ(u)

∑
℘ln∈Pln

pref
ul π̃(℘ln) exp[−θ(c′ul + c̃(℘ln))]

=
∑

l∈Succ(u)

pref
ul exp[−θc′ul]

∑
℘ln∈Pln

π̃(℘ln) exp[−θc̃(℘ln)]

zln

=
∑

l∈Succ(u)

pref
ul exp[−θc′ul]zln (B.1)

where ℘un is a path starting in action state u and ending in the killing absorbing
state n. Note that we have to use the augmented costs c′ul in order to ensure
that the flow in the edge (u, l) is equal to the predefined transition probability
pref
ul provided by the environment. The value of these augmented costs can be

found in Equation (9.34) and will be adapted to our bipartite MDP graph later.
This provides

c′ul = 1
θ log zln − 1

θ

∑
l′∈Succ(u)

pref
ul′ log zl′n +

∑
l′∈Succ(u)

pref
ul′cul′ (B.2)

Injecting this result in Equation (B.1) yields

zun (B.3)

=
∑
l∈S(u)

pref
ul exp[−θc′ul]zln

=
∑
l∈S(u)

pref
ul exp[− log zln] exp

[ ∑
l′∈S(u)

pref
ul′ log zl′n

]
exp

[
− θ

∑
l′∈S(u)

pref
ul′cul′

]
zln

=
∑
l∈S(u)

pref
ul exp

[ ∑
l′∈S(u)

pref
ul′ log zl′n

]
exp

[
− θ

∑
l′∈S(u)

pref
ul′cul′

]

= exp

[ ∑
l∈S(u)

pref
ul log zln

]
exp

[
− θ

∑
l′∈S(u)

pref
ul′cul′

]
(B.4)

where S(u) has been used as a shortcut for Succ(u).
Now, in the case of our bipartite MDP graph, the original costs cul are equal

to zero for transitions between action nodes and state nodes, as specified in
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Equation (9.36). Therefore,

zun = exp

[ ∑
l∈Succ(u)

pref
ul log zln

]
(B.5)

which is the expression for computing the backward variables associated to ac-
tions. This expression depends on zln, which will be derived in Subsection B.3.

B.2 Computation of the optimal policy

Let us now replace the value of zun, just obtained in the previous section, in
the equation providing the optimal policy (Equation (B.1)),

p∗ku ∝ pref
ku exp[−θcku]zun

= pref
ku exp[−θcku] exp

[ ∑
l∈Succ(u)

pref
ul log zln

]

= pref
ku exp

[
− θ
(
cku +

∑
l∈Succ(u)

pref
ul (− 1

θ log zln)
)]

= pref
ku exp

[
− θ
(
cku +

∑
l∈Succ(u)

pref
ul φ

S
l (T )

)]
(B.6)

which justifies Equation (9.40) after normalization. In the last step, we in-
troduced the free energy defined in Subsection 9.4.2, φSk (T ) = −T log zkn =
− 1
θ log zkn. Because the free energy, and thus the optimal policy, depends on

the backward variable defined on states, zkn with k ∈ S , let us now turn to the
computation of this quantity.

B.3 Computation of the backward variable on
states

By proceeding as for the derivation of the recurrence relation of Equation (B.1),
we obtain

zkn =
∑

℘kn∈Pkn

π̃(℘kn) exp[−θc̃(℘kn)]

=
∑

u∈U(k)

pref
ku exp[−θcku]zun (B.7)
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and this last result only depends on the original costs cku (and not the aug-
mented costs c′ku) because there is no augmented cost associated to the transi-
tions from a state to an action node, as these transitions are not part of the set
of constrained transitions (see Equation (9.36)).

B.4 The soft value iteration recurrence equation

Taking − 1
θ log of each side of this Equation (B.7), using φSk (T ) = − 1

θ log zkn,
and replacing zun by its value provided in Equation (B.5) gives

φSk (T ) = − 1
θ log

[ ∑
u∈U(k)

pref
ku exp[−θcku]zun

]

= − 1
θ log

 ∑
u∈U(k)

pref
ku exp[−θcku] exp

[ ∑
l∈Succ(u)

pref
ul log zln

]
= − 1

θ log

 ∑
u∈U(k)

pref
ku exp

[
− θ
(
cku +

∑
l∈Succ(u)

pref
ul (− 1

θ log zln)
)]

= − 1
θ log

 ∑
u∈U(k)

pref
ku exp

[
− θ
(
cku +

∑
l∈Succ(u)

pref
ul φ

S
l (T )

)] (B.8)

which is exactly the sought result of Equation (9.38), together with the fact that
when k = n (absorbing, killing, state), znn = 1 (see Equation (9.8)) and thus
φSn(T ) = 0. Notice that the φSk (T ) are necessarily non-negative. This equation
is a smooth approximation of the standard value iteration algorithm through
the softmin operator (Equation (9.17)) – the soft value iteration – that has to be
iterated on all nodes until convergence.
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